001     128367
005     20240228135054.0
024 7 _ |a 10.1002/pmic.201300320
|2 doi
024 7 _ |a pmid:24610664
|2 pmid
024 7 _ |a altmetric:2208411
|2 altmetric
037 _ _ |a DKFZ-2017-04384
041 _ _ |a eng
082 _ _ |a 540
100 1 _ |a Srinivasan, Harish
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Prediction of recurrence of non muscle-invasive bladder cancer by means of a protein signature identified by antibody microarray analyses.
260 _ _ |a Weinheim
|c 2014
|b Wiley VCH55771
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521638431_922
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a About 70% of newly diagnosed cases of bladder cancer are low-stage, low-grade, non muscle-invasive. Standard treatment is transurethral resection. About 60% of the tumors will recur, however, and in part progress to become invasive. Therefore, surveillance cystoscopy is performed after resection. However, in the USA and Europe alone, about 54 000 new patients per year undergo repeated cystoscopies over several years, who do not experience recurrence. Analysing in a pilot study resected tumors from patients with (n = 19) and without local recurrence (n = 6) after a period of 5 years by means of an antibody microarray that targeted 724 cancer-related proteins, we identified 255 proteins with significantly differential abundance. Most are involved in the regulation and execution of apoptosis and cell proliferation. A multivariate classifier was constructed based on 20 proteins. It facilitates the prediction of recurrence with a sensitivity of 80% and a specificity of 100%. As a measure of overall accuracy, the area under the curve value was found to be 91%. After validation in additional sample cohorts with a similarly long follow-up, such a signature could support decision making about the stringency of surveillance or even different treatment options.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Proteome
|2 NLM Chemicals
700 1 _ |a Allory, Yves
|b 1
700 1 _ |a Sill, Martin
|0 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
|b 2
|u dkfz
700 1 _ |a Vordos, Dimitri
|b 3
700 1 _ |a Alhamdani, Mohamed Saiel Saeed
|0 P:(DE-He78)db487558e84f68cf9bf0496497be50f7
|b 4
|u dkfz
700 1 _ |a Radvanyi, Francois
|b 5
700 1 _ |a Hoheisel, Jörg
|0 P:(DE-He78)c684a26e52cc44716354a4d15f530b4e
|b 6
|u dkfz
700 1 _ |a Schröder, Christoph
|0 P:(DE-He78)886719d32ffd20859eb73f286b799b2d
|b 7
|e Last author
|u dkfz
773 _ _ |a 10.1002/pmic.201300320
|g Vol. 14, no. 11, p. 1333 - 1342
|0 PERI:(DE-600)2253166-X
|n 11
|p 1333 - 1342
|t Practical proteomics
|v 14
|y 2014
|x 1615-9853
909 C O |o oai:inrepo02.dkfz.de:128367
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)db487558e84f68cf9bf0496497be50f7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)c684a26e52cc44716354a4d15f530b4e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)886719d32ffd20859eb73f286b799b2d
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|2 G:(DE-HGF)POF3-300
|v Functional and structural genomics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PROTEOMICS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)B070-20160331
|k B070
|l Funktionelle Genomanalyse
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)B070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21