001 | 128627 | ||
005 | 20240228145541.0 | ||
024 | 7 | _ | |a 10.18632/oncotarget.19536 |2 doi |
024 | 7 | _ | |a pmid:28978130 |2 pmid |
024 | 7 | _ | |a pmc:PMC5620270 |2 pmc |
024 | 7 | _ | |a altmetric:27094277 |2 altmetric |
037 | _ | _ | |a DKFZ-2017-04643 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Gross, Jonathan P |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Body fat composition as predictive factor for treatment response in patients with newly diagnosed multiple myeloma - subgroup analysis of the prospective GMMG MM5 trial. |
260 | _ | _ | |a [S.l.] |c 2017 |b Impact Journals LLC |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1660726766_10248 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Obesity is a well-known risk factor for malignant tumors and increased body mass index (BMI) is correlated to the risk of developing multiple myeloma (MM). The correlation of body fat composition with disease activity, adverse events and treatment response of MM patients has not been investigated yet.A subgroup of 108 patients from a single institution enrolled in the prospective GMMG-MM5 trial, who received a whole-body low-dose computed tomography (WBLDCT) before induction therapy, were included in this study. Body fat composition was measured in WBLDCT for each patient, divided in the compartments abdomen, pelvis, thigh and further categorized in subcutaneous (SAT) and visceral adipose tissue (VAT). The correlation of these parameters with disease activity (M protein, plasma cell count, LDH, CRAB-criteria), adverse cytogenetics, adverse events and treatment response were evaluated.Significant reciprocal correlation was found between adverse cytogenetics and VAT of the abdomen and pelvis, respectively (gain 1q21: p=0.009 and p=0.021; t(4;14): p=0.038 and p=0.042). No correlation of VAT or SAT with adverse events was observed. Significant reciprocal correlation was observed between abdominal (p=0.03) and pelvic (p=0.035) VAT and treatment response. Abdominal VAT remains significant (p=0.034) independently of revised ISS stage and treatment. The BMI did not show a significant correlation with treatment response or investigated cytogenetics.Based on the clinically relevant difference in treatment outcome depending on VAT and SAT, excessive body fat of abdomen and pelvis might be a predictive factor for poor treatment response. Further influences in this context should be considered as well, e.g. chemotherapy dosing and body fat metabolism. Further studies are necessary to investigate this hypothesis. |
536 | _ | _ | |a 315 - Imaging and radiooncology (POF3-315) |0 G:(DE-HGF)POF3-315 |c POF3-315 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Nattenmüller, Johanna |b 1 |
700 | 1 | _ | |a Hemmer, Stefan |b 2 |
700 | 1 | _ | |a Tichy, Diana |0 P:(DE-He78)2ef631585610340ff425c9c31fcabd03 |b 3 |
700 | 1 | _ | |a Krzykalla, Julia |0 P:(DE-He78)5a7a75d1b29b770f98f1bb2062fc3df9 |b 4 |
700 | 1 | _ | |a Goldschmidt, Hartmut |0 P:(DE-He78)a1aa959d47e3e026abe157a8adf24b96 |b 5 |
700 | 1 | _ | |a Bertsch, Uta |b 6 |
700 | 1 | _ | |a Delorme, Stefan |0 P:(DE-He78)3e76653311420a51a5faeb80363bd73e |b 7 |
700 | 1 | _ | |a Kauczor, Hans-Ulrich |b 8 |
700 | 1 | _ | |a Hillengass, Jens |0 P:(DE-He78)7ccc574e713526d2a22d7acb9b2248c5 |b 9 |
700 | 1 | _ | |a Merz, Maximilian |0 P:(DE-HGF)0 |b 10 |e Last author |
773 | _ | _ | |a 10.18632/oncotarget.19536 |g Vol. 8, no. 40 |0 PERI:(DE-600)2560162-3 |n 40 |p 68460-68471 |t OncoTarget |v 8 |y 2017 |x 1949-2553 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:128627 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)2ef631585610340ff425c9c31fcabd03 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)5a7a75d1b29b770f98f1bb2062fc3df9 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-He78)a1aa959d47e3e026abe157a8adf24b96 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)3e76653311420a51a5faeb80363bd73e |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)7ccc574e713526d2a22d7acb9b2248c5 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-315 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Imaging and radiooncology |x 0 |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ONCOTARGET : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ONCOTARGET : 2015 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l C060 Biostatistik |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E010-20160331 |k E010 |l E010 Radiologie |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a I:(DE-He78)E010-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|