001     128627
005     20240228145541.0
024 7 _ |a 10.18632/oncotarget.19536
|2 doi
024 7 _ |a pmid:28978130
|2 pmid
024 7 _ |a pmc:PMC5620270
|2 pmc
024 7 _ |a altmetric:27094277
|2 altmetric
037 _ _ |a DKFZ-2017-04643
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Gross, Jonathan P
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Body fat composition as predictive factor for treatment response in patients with newly diagnosed multiple myeloma - subgroup analysis of the prospective GMMG MM5 trial.
260 _ _ |a [S.l.]
|c 2017
|b Impact Journals LLC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1660726766_10248
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Obesity is a well-known risk factor for malignant tumors and increased body mass index (BMI) is correlated to the risk of developing multiple myeloma (MM). The correlation of body fat composition with disease activity, adverse events and treatment response of MM patients has not been investigated yet.A subgroup of 108 patients from a single institution enrolled in the prospective GMMG-MM5 trial, who received a whole-body low-dose computed tomography (WBLDCT) before induction therapy, were included in this study. Body fat composition was measured in WBLDCT for each patient, divided in the compartments abdomen, pelvis, thigh and further categorized in subcutaneous (SAT) and visceral adipose tissue (VAT). The correlation of these parameters with disease activity (M protein, plasma cell count, LDH, CRAB-criteria), adverse cytogenetics, adverse events and treatment response were evaluated.Significant reciprocal correlation was found between adverse cytogenetics and VAT of the abdomen and pelvis, respectively (gain 1q21: p=0.009 and p=0.021; t(4;14): p=0.038 and p=0.042). No correlation of VAT or SAT with adverse events was observed. Significant reciprocal correlation was observed between abdominal (p=0.03) and pelvic (p=0.035) VAT and treatment response. Abdominal VAT remains significant (p=0.034) independently of revised ISS stage and treatment. The BMI did not show a significant correlation with treatment response or investigated cytogenetics.Based on the clinically relevant difference in treatment outcome depending on VAT and SAT, excessive body fat of abdomen and pelvis might be a predictive factor for poor treatment response. Further influences in this context should be considered as well, e.g. chemotherapy dosing and body fat metabolism. Further studies are necessary to investigate this hypothesis.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Nattenmüller, Johanna
|b 1
700 1 _ |a Hemmer, Stefan
|b 2
700 1 _ |a Tichy, Diana
|0 P:(DE-He78)2ef631585610340ff425c9c31fcabd03
|b 3
700 1 _ |a Krzykalla, Julia
|0 P:(DE-He78)5a7a75d1b29b770f98f1bb2062fc3df9
|b 4
700 1 _ |a Goldschmidt, Hartmut
|0 P:(DE-He78)a1aa959d47e3e026abe157a8adf24b96
|b 5
700 1 _ |a Bertsch, Uta
|b 6
700 1 _ |a Delorme, Stefan
|0 P:(DE-He78)3e76653311420a51a5faeb80363bd73e
|b 7
700 1 _ |a Kauczor, Hans-Ulrich
|b 8
700 1 _ |a Hillengass, Jens
|0 P:(DE-He78)7ccc574e713526d2a22d7acb9b2248c5
|b 9
700 1 _ |a Merz, Maximilian
|0 P:(DE-HGF)0
|b 10
|e Last author
773 _ _ |a 10.18632/oncotarget.19536
|g Vol. 8, no. 40
|0 PERI:(DE-600)2560162-3
|n 40
|p 68460-68471
|t OncoTarget
|v 8
|y 2017
|x 1949-2553
909 C O |p VDB
|o oai:inrepo02.dkfz.de:128627
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)2ef631585610340ff425c9c31fcabd03
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)5a7a75d1b29b770f98f1bb2062fc3df9
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-He78)a1aa959d47e3e026abe157a8adf24b96
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)3e76653311420a51a5faeb80363bd73e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)7ccc574e713526d2a22d7acb9b2248c5
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ONCOTARGET : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ONCOTARGET : 2015
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21