000128631 001__ 128631
000128631 005__ 20240228145542.0
000128631 0247_ $$2doi$$a10.3389/fgene.2017.00137
000128631 0247_ $$2pmid$$apmid:29033976
000128631 0247_ $$2pmc$$apmc:PMC5627533
000128631 0247_ $$2altmetric$$aaltmetric:26824694
000128631 037__ $$aDKFZ-2017-04647
000128631 041__ $$aeng
000128631 082__ $$a570
000128631 1001_ $$0P:(DE-HGF)0$$aHuang, Zhiqin$$b0$$eFirst author
000128631 245__ $$aconfFuse: High-Confidence Fusion Gene Detection across Tumor Entities.
000128631 260__ $$aLausanne$$bFrontiers Media$$c2017
000128631 3367_ $$2DRIVER$$aarticle
000128631 3367_ $$2DataCite$$aOutput Types/Journal article
000128631 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510664457_10704
000128631 3367_ $$2BibTeX$$aARTICLE
000128631 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000128631 3367_ $$00$$2EndNote$$aJournal Article
000128631 520__ $$aBackground: Fusion genes play an important role in the tumorigenesis of many cancers. Next-generation sequencing (NGS) technologies have been successfully applied in fusion gene detection for the last several years, and a number of NGS-based tools have been developed for identifying fusion genes during this period. Most fusion gene detection tools based on RNA-seq data report a large number of candidates (mostly false positives), making it hard to prioritize candidates for experimental validation and further analysis. Selection of reliable fusion genes for downstream analysis becomes very important in cancer research. We therefore developed confFuse, a scoring algorithm to reliably select high-confidence fusion genes which are likely to be biologically relevant. Results: confFuse takes multiple parameters into account in order to assign each fusion candidate a confidence score, of which score ≥8 indicates high-confidence fusion gene predictions. These parameters were manually curated based on our experience and on certain structural motifs of fusion genes. Compared with alternative tools, based on 96 published RNA-seq samples from different tumor entities, our method can significantly reduce the number of fusion candidates (301 high-confidence from 8,083 total predicted fusion genes) and keep high detection accuracy (recovery rate 85.7%). Validation of 18 novel, high-confidence fusions detected in three breast tumor samples resulted in a 100% validation rate. Conclusions: confFuse is a novel downstream filtering method that allows selection of highly reliable fusion gene candidates for further downstream analysis and experimental validations. confFuse is available at https://github.com/Zhiqin-HUANG/confFuse.
000128631 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000128631 588__ $$aDataset connected to CrossRef, PubMed,
000128631 7001_ $$0P:(DE-He78)551bb92841f634070997aa168d818492$$aJones, David$$b1$$udkfz
000128631 7001_ $$0P:(DE-He78)048cd293ec9a8bd9be8a97dde02ee343$$aWu, Yonghe$$b2$$udkfz
000128631 7001_ $$0P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c$$aLichter, Peter$$b3$$udkfz
000128631 7001_ $$0P:(DE-He78)1beba8f953e7ae7e96e8d3e9a48f10f7$$aZapatka, Marc$$b4$$eLast author$$udkfz
000128631 773__ $$0PERI:(DE-600)2606823-0$$a10.3389/fgene.2017.00137$$gVol. 8, p. 137$$p137$$tFrontiers in genetics$$v8$$x1664-8021$$y2017
000128631 909CO $$ooai:inrepo02.dkfz.de:128631$$pVDB
000128631 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c16f26d78779ca1c53b6939e7a5ce788$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000128631 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)551bb92841f634070997aa168d818492$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000128631 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)048cd293ec9a8bd9be8a97dde02ee343$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000128631 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000128631 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1beba8f953e7ae7e96e8d3e9a48f10f7$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000128631 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000128631 9141_ $$y2017
000128631 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000128631 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000128631 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000128631 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000128631 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000128631 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000128631 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000128631 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000128631 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000128631 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000128631 9201_ $$0I:(DE-He78)B060-20160331$$kB060$$lMolekulare Genetik$$x0
000128631 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x1
000128631 980__ $$ajournal
000128631 980__ $$aVDB
000128631 980__ $$aI:(DE-He78)B060-20160331
000128631 980__ $$aI:(DE-He78)B062-20160331
000128631 980__ $$aUNRESTRICTED