001     128777
005     20240228143347.0
024 7 _ |a 10.1371/journal.pone.0155226
|2 doi
024 7 _ |a pmid:27159447
|2 pmid
024 7 _ |a pmc:PMC4861340
|2 pmc
024 7 _ |a altmetric:7306548
|2 altmetric
037 _ _ |a DKFZ-2017-04792
041 _ _ |a eng
082 _ _ |a 500
100 1 _ |a Hieke, Stefanie
|b 0
245 _ _ |a Identifying Prognostic SNPs in Clinical Cohorts: Complementing Univariate Analyses by Resampling and Multivariable Modeling.
260 _ _ |a Lawrence, Kan.
|c 2016
|b PLoS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522055611_22795
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Clinical cohorts with time-to-event endpoints are increasingly characterized by measurements of a number of single nucleotide polymorphisms that is by a magnitude larger than the number of measurements typically considered at the gene level. At the same time, the size of clinical cohorts often is still limited, calling for novel analysis strategies for identifying potentially prognostic SNPs that can help to better characterize disease processes. We propose such a strategy, drawing on univariate testing ideas from epidemiological case-controls studies on the one hand, and multivariable regression techniques as developed for gene expression data on the other hand. In particular, we focus on stable selection of a small set of SNPs and corresponding genes for subsequent validation. For univariate analysis, a permutation-based approach is proposed to test at the gene level. We use regularized multivariable regression models for considering all SNPs simultaneously and selecting a small set of potentially important prognostic SNPs. Stability is judged according to resampling inclusion frequencies for both the univariate and the multivariable approach. The overall strategy is illustrated with data from a cohort of acute myeloid leukemia patients and explored in a simulation study. The multivariable approach is seen to automatically focus on a smaller set of SNPs compared to the univariate approach, roughly in line with blocks of correlated SNPs. This more targeted extraction of SNPs results in more stable selection at the SNP as well as at the gene level. Thus, the multivariable regression approach with resampling provides a perspective in the proposed analysis strategy for SNP data in clinical cohorts highlighting what can be added by regularized regression techniques compared to univariate analyses.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 1
|u dkfz
700 1 _ |a Schlenk, Richard F
|b 2
700 1 _ |a Schumacher, Martin
|b 3
700 1 _ |a Bullinger, Lars
|b 4
700 1 _ |a Binder, Harald
|b 5
773 _ _ |a 10.1371/journal.pone.0155226
|g Vol. 11, no. 5, p. e0155226 -
|0 PERI:(DE-600)2267670-3
|n 5
|p e0155226 -
|t PLoS one
|v 11
|y 2016
|x 1932-6203
909 C O |o oai:inrepo02.dkfz.de:128777
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2016
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21