001     128891
005     20240228143355.0
024 7 _ |a 10.1148/radiol.2016161382
|2 doi
024 7 _ |a pmid:27636026
|2 pmid
024 7 _ |a 0033-8419
|2 ISSN
024 7 _ |a 1527-1315
|2 ISSN
024 7 _ |a altmetric:12063990
|2 altmetric
037 _ _ |a DKFZ-2017-04904
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Kickingereder, Philipp
|0 P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e
|b 0
|e First author
|u dkfz
245 _ _ |a Radiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features.
260 _ _ |a Oak Brook, Ill.
|c 2016
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524467806_6386
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Purpose To evaluate the association of multiparametric and multiregional magnetic resonance (MR) imaging features with key molecular characteristics in patients with newly diagnosed glioblastoma. Materials and Methods Retrospective data evaluation was approved by the local ethics committee, and the requirement to obtain informed consent was waived. Preoperative MR imaging features were correlated with key molecular characteristics within a single-institution cohort of 152 patients with newly diagnosed glioblastoma. Preoperative MR imaging features (n = 31) included multiparametric (anatomic and diffusion-, perfusion-, and susceptibility-weighted images) and multiregional (contrast-enhancing regions and hyperintense regions at nonenhanced fluid-attenuated inversion recovery imaging) information with histogram quantification of tumor volumes, volume ratios, apparent diffusion coefficients, cerebral blood flow, cerebral blood volume, and intratumoral susceptibility signals. Molecular characteristics determined included global DNA methylation subgroups (eg, mesenchymal, RTK I 'PGFRA,' RTK II 'classic'), MGMT promoter methylation status, and hallmark copy number variations (EGFR, PDGFRA, MDM4, and CDK4 amplification; PTEN, CDKN2A, NF1, and RB1 loss). Univariate analyses (voxel-lesion symptom mapping for tumor location, Wilcoxon test for all other MR imaging features) and machine learning models were applied to study the strength of association and discriminative value of MR imaging features for predicting underlying molecular characteristics. Results There was no tumor location predilection for any of the assessed molecular parameters (permutation-adjusted P > .05). Univariate imaging parameter associations were noted for EGFR amplification and CDKN2A loss, with both demonstrating increased Gaussian-normalized relative cerebral blood volume and Gaussian-normalized relative cerebral blood flow values (area under the receiver operating characteristics curve: 63%-69%, false discovery rate-adjusted P < .05). Subjecting all MR imaging features to machine learning-based classification enabled prediction of EGFR amplification status and the RTK II glioblastoma subgroup with a moderate, yet significantly greater, accuracy (63% for EGFR [P < .01], 61% for RTK II [P = .01]) than prediction by chance; prediction accuracy for all other molecular parameters was not significant. Conclusion The authors found associations between established MR imaging features and molecular characteristics, although not of sufficient strength to enable generation of machine learning classification models for reliable and clinically meaningful prediction of molecular characteristics in patients with glioblastoma. (©) RSNA, 2016 Online supplemental material is available for this article.
536 _ _ |a 317 - Translational cancer research (POF3-317)
|0 G:(DE-HGF)POF3-317
|c POF3-317
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a CDKN2A protein, human
|2 NLM Chemicals
650 _ 7 |a Cyclin-Dependent Kinase Inhibitor p18
|2 NLM Chemicals
650 _ 7 |a Neoplasm Proteins
|2 NLM Chemicals
650 _ 7 |a EGFR protein, human
|0 EC 2.7.10.1
|2 NLM Chemicals
650 _ 7 |a Receptor, Epidermal Growth Factor
|0 EC 2.7.10.1
|2 NLM Chemicals
700 1 _ |a Bonekamp, David
|0 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
|b 1
|u dkfz
700 1 _ |a Nowosielski, Martha
|b 2
700 1 _ |a Kratz, Annekathrin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sill, Martin
|0 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
|b 4
|u dkfz
700 1 _ |a Burth, Sina
|b 5
700 1 _ |a Wick, Antje
|b 6
700 1 _ |a Eidel, Oliver
|b 7
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 8
|u dkfz
700 1 _ |a Radbruch, Alexander
|0 P:(DE-He78)77588f5b9413339755a66e739d316c7d
|b 9
|u dkfz
700 1 _ |a Debus, Jürgen
|b 10
700 1 _ |a Herold-Mende, Christel
|0 P:(DE-He78)c146c0b611b8fb654444ec078766f5ea
|b 11
|u dkfz
700 1 _ |a Unterberg, Andreas
|b 12
700 1 _ |a Jones, David
|0 P:(DE-He78)551bb92841f634070997aa168d818492
|b 13
|u dkfz
700 1 _ |a Pfister, Stefan
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 14
|u dkfz
700 1 _ |a Wick, Wolfgang
|0 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee
|b 15
|u dkfz
700 1 _ |a von Deimling, Andreas
|0 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
|b 16
|u dkfz
700 1 _ |a Bendszus, Martin
|b 17
700 1 _ |a Capper, David
|0 P:(DE-He78)51bf9ae9cb5771b30c483e5597ef606c
|b 18
|e Last author
|u dkfz
773 _ _ |a 10.1148/radiol.2016161382
|g Vol. 281, no. 3, p. 907 - 918
|0 PERI:(DE-600)2010588-5
|n 3
|p 907 - 918
|t Radiology
|v 281
|y 2016
|x 1527-1315
909 C O |o oai:inrepo02.dkfz.de:128891
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)77588f5b9413339755a66e739d316c7d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)c146c0b611b8fb654444ec078766f5ea
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)551bb92841f634070997aa168d818492
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)51bf9ae9cb5771b30c483e5597ef606c
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-317
|2 G:(DE-HGF)POF3-300
|v Translational cancer research
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RADIOLOGY : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b RADIOLOGY : 2015
920 1 _ |0 I:(DE-He78)E012-20160331
|k E012
|l Neuroonkologische Bildgebung
|x 0
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l Radiologie
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 2
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 3
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l Pädiatrische Neuroonkologie
|x 4
920 1 _ |0 I:(DE-He78)G370-20160331
|k G370
|l KKE Neuroonkologie
|x 5
920 1 _ |0 I:(DE-He78)G380-20160331
|k G380
|l KKE Neuropathologie
|x 6
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E012-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)G370-20160331
980 _ _ |a I:(DE-He78)G380-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21