001     128894
005     20240228143355.0
024 7 _ |a 10.1158/1078-0432.CCR-16-0702
|2 doi
024 7 _ |a pmid:27803067
|2 pmid
024 7 _ |a pmc:PMC5503450
|2 pmc
024 7 _ |a 1078-0432
|2 ISSN
024 7 _ |a 1557-3265
|2 ISSN
024 7 _ |a altmetric:12537085
|2 altmetric
037 _ _ |a DKFZ-2017-04907
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Kickingereder, Philipp
|0 P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e
|b 0
|e First author
|u dkfz
245 _ _ |a Large-scale Radiomic Profiling of Recurrent Glioblastoma Identifies an Imaging Predictor for Stratifying Anti-Angiogenic Treatment Response.
260 _ _ |a Philadelphia, Pa. [u.a.]
|c 2016
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524748826_17079
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Antiangiogenic treatment with bevacizumab, a mAb to the VEGF, is the single most widely used therapeutic agent for patients with recurrent glioblastoma. A major challenge is that there are currently no validated biomarkers that can predict treatment outcome. Here we analyze the potential of radiomics, an emerging field of research that aims to utilize the full potential of medical imaging.A total of 4,842 quantitative MRI features were automatically extracted and analyzed from the multiparametric tumor of 172 patients (allocated to a discovery and validation set with a 2:1 ratio) with recurrent glioblastoma prior to bevacizumab treatment. Leveraging a high-throughput approach, radiomic features of patients in the discovery set were subjected to a supervised principal component (superpc) analysis to generate a prediction model for stratifying treatment outcome to antiangiogenic therapy by means of both progression-free and overall survival (PFS and OS).The superpc predictor stratified patients in the discovery set into a low or high risk group for PFS (HR = 1.60; P = 0.017) and OS (HR = 2.14; P < 0.001) and was successfully validated for patients in the validation set (HR = 1.85, P = 0.030 for PFS; HR = 2.60, P = 0.001 for OS).Our radiomic-based superpc signature emerges as a putative imaging biomarker for the identification of patients who may derive the most benefit from antiangiogenic therapy, advances the knowledge in the noninvasive characterization of brain tumors, and stresses the role of radiomics as a novel tool for improving decision support in cancer treatment at low cost. Clin Cancer Res; 22(23); 5765-71. ©2016 AACR.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Götz, Michael
|0 P:(DE-He78)abd768f879e71d08068d48fabb7e96cf
|b 1
|u dkfz
700 1 _ |a Muschelli, John
|b 2
700 1 _ |a Wick, Antje
|b 3
700 1 _ |a Neuberger, Ulf
|b 4
700 1 _ |a Shinohara, Russell T
|b 5
700 1 _ |a Sill, Martin
|0 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
|b 6
|u dkfz
700 1 _ |a Nowosielski, Martha
|b 7
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 8
|u dkfz
700 1 _ |a Radbruch, Alexander
|0 P:(DE-He78)77588f5b9413339755a66e739d316c7d
|b 9
|u dkfz
700 1 _ |a Wick, Wolfgang
|0 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee
|b 10
|u dkfz
700 1 _ |a Bendszus, Martin
|b 11
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 12
|u dkfz
700 1 _ |a Bonekamp, David
|0 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
|b 13
|e Last author
|u dkfz
773 _ _ |a 10.1158/1078-0432.CCR-16-0702
|g Vol. 22, no. 23, p. 5765 - 5771
|0 PERI:(DE-600)2036787-9
|n 23
|p 5765 - 5771
|t Clinical cancer research
|v 22
|y 2016
|x 1557-3265
909 C O |o oai:inrepo02.dkfz.de:128894
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)abd768f879e71d08068d48fabb7e96cf
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)77588f5b9413339755a66e739d316c7d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2016
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CLIN CANCER RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CLIN CANCER RES : 2015
920 1 _ |0 I:(DE-He78)E012-20160331
|k E012
|l Neuroonkologische Bildgebung
|x 0
920 1 _ |0 I:(DE-He78)E130-20160331
|k E130
|l Computer-assistierte medizinische Interventionen
|x 1
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l Radiologie
|x 2
920 1 _ |0 I:(DE-He78)G370-20160331
|k G370
|l KKE Neuroonkologie
|x 3
920 1 _ |0 I:(DE-He78)E132-20160331
|k E132
|l Medizinische Bildverarbeitung
|x 4
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 5
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 6
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E012-20160331
980 _ _ |a I:(DE-He78)E130-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)G370-20160331
980 _ _ |a I:(DE-He78)E132-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21