000128912 001__ 128912
000128912 005__ 20240228143357.0
000128912 0247_ $$2doi$$a10.1186/s12885-016-2879-8
000128912 0247_ $$2pmid$$apmid:27855654
000128912 0247_ $$2pmc$$apmc:PMC5114842
000128912 0247_ $$2altmetric$$aaltmetric:14140227
000128912 037__ $$aDKFZ-2017-04925
000128912 041__ $$aeng
000128912 082__ $$a610
000128912 1001_ $$aKlose, Johannes$$b0
000128912 245__ $$aSalinomycin inhibits metastatic colorectal cancer growth and interferes with Wnt/β-catenin signaling in CD133(+) human colorectal cancer cells.
000128912 260__ $$aLondon$$bBioMed Central$$c2016
000128912 3367_ $$2DRIVER$$aarticle
000128912 3367_ $$2DataCite$$aOutput Types/Journal article
000128912 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521122545_29643
000128912 3367_ $$2BibTeX$$aARTICLE
000128912 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000128912 3367_ $$00$$2EndNote$$aJournal Article
000128912 520__ $$aThe polyether antibiotic Salinomycin (Sal) is regarded as an inhibitor of cancer stem cells. Its effectiveness on human colorectal cancer (CRC) cells in vitro has been demonstrated before. The aim of this study was to establish a murine model to investigate the effectiveness of Sal in vivo. Furthermore, we investigated the impact of Sal on Wnt/β-catenin signaling in human CD133(+) CRC cells.The two murine CRC cell lines MC38 and CT26 were used to analyze the impact of Sal on tumor cell proliferation, viability, migration, cell cycle progression and cell death in vitro. For in vivo studies, CT26 cells were injected into syngeneic BALB/c mice to initiate (i) subcutaneous, (ii) orthotopic, or (iii) metastatic CRC growth. Sal was administered daily, 5-Fluoruracil served as a control. For mechanistic studies, the CD133(+)and CD133(-) subpopulations of human CRC cells were separated by flow cytometry and separately exposed to increasing concentrations of Sal. The impact on Wnt/β-catenin signaling was determined by Western blotting and quantitative PCR.Sal markedly impaired tumor cell viability, proliferation and migration, and induced necrotic cell death in vitro. CRC growth in vivo was likewise inhibited upon Sal treatment. Interference with Wnt signaling and reduced expression of the Wnt target genes Fibronectin and Lgr5 indicates a novel molecular mechanism, mediating anti-tumoral effects of Sal in CRC.Sal effectively impairs CRC growth in vivo. Furthermore, Sal acts as an inhibitor of Wnt/β-catenin signaling. Thus, Salinomycin represents a promising candidate for clinical CRC treatment.
000128912 536__ $$0G:(DE-HGF)POF3-311$$a311 - Signalling pathways, cell and tumor biology (POF3-311)$$cPOF3-311$$fPOF III$$x0
000128912 588__ $$aDataset connected to CrossRef, PubMed,
000128912 650_7 $$2NLM Chemicals$$aAC133 Antigen
000128912 650_7 $$2NLM Chemicals$$aPROM1 protein, human
000128912 650_7 $$2NLM Chemicals$$aPyrans
000128912 650_7 $$062UXS86T64$$2NLM Chemicals$$asalinomycin
000128912 7001_ $$aEissele, Jana$$b1
000128912 7001_ $$aVolz, Claudia$$b2
000128912 7001_ $$0P:(DE-He78)9743d171a21db4cf055df4dcf0153153$$aSchmitt, Steffen$$b3$$udkfz
000128912 7001_ $$aRitter, Alina$$b4
000128912 7001_ $$aYing, Shen$$b5
000128912 7001_ $$aSchmidt, Thomas$$b6
000128912 7001_ $$aHeger, Ulrike$$b7
000128912 7001_ $$aSchneider, Martin$$b8
000128912 7001_ $$aUlrich, Alexis$$b9
000128912 773__ $$0PERI:(DE-600)2041352-X$$a10.1186/s12885-016-2879-8$$gVol. 16, no. 1, p. 896$$n1$$p896$$tBMC cancer$$v16$$x1471-2407$$y2016
000128912 909CO $$ooai:inrepo02.dkfz.de:128912$$pVDB
000128912 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9743d171a21db4cf055df4dcf0153153$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000128912 9131_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000128912 9141_ $$y2016
000128912 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC CANCER : 2015
000128912 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000128912 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000128912 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000128912 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000128912 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000128912 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000128912 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000128912 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000128912 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000128912 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000128912 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000128912 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000128912 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000128912 9201_ $$0I:(DE-He78)W220-20160331$$kW220$$lZytometrie$$x0
000128912 980__ $$ajournal
000128912 980__ $$aVDB
000128912 980__ $$aI:(DE-He78)W220-20160331
000128912 980__ $$aUNRESTRICTED