000128924 001__ 128924
000128924 005__ 20240228145547.0
000128924 0247_ $$2doi$$a10.1002/mp.12094
000128924 0247_ $$2pmid$$apmid:28061010
000128924 0247_ $$2ISSN$$a0094-2405
000128924 0247_ $$2ISSN$$a1522-8541
000128924 0247_ $$2altmetric$$aaltmetric:15267502
000128924 037__ $$aDKFZ-2017-04937
000128924 041__ $$aeng
000128924 082__ $$a610
000128924 1001_ $$aBier, Bastian$$b0
000128924 245__ $$aScatter correction using a primary modulator on a clinical angiography C-arm CT system.
000128924 260__ $$aNew York, NY$$c2017
000128924 3367_ $$2DRIVER$$aarticle
000128924 3367_ $$2DataCite$$aOutput Types/Journal article
000128924 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510041975_26476
000128924 3367_ $$2BibTeX$$aARTICLE
000128924 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000128924 3367_ $$00$$2EndNote$$aJournal Article
000128924 520__ $$aCone beam computed tomography (CBCT) suffers from a large amount of scatter, resulting in severe scatter artifacts in the reconstructions. Recently, a new scatter correction approach, called improved primary modulator scatter estimation (iPMSE), was introduced. That approach utilizes a primary modulator that is inserted between the X-ray source and the object. This modulation enables estimation of the scatter in the projection domain by optimizing an objective function with respect to the scatter estimate. Up to now the approach has not been implemented on a clinical angiography C-arm CT system.In our work, the iPMSE method is transferred to a clinical C-arm CBCT. Additional processing steps are added in order to compensate for the C-arm scanner motion and the automatic X-ray tube current modulation. These challenges were overcome by establishing a reference modulator database and a block-matching algorithm. Experiments with phantom and experimental in vivo data were performed to evaluate the method.We show that scatter correction using primary modulation is possible on a clinical C-arm CBCT. Scatter artifacts in the reconstructions are reduced with the newly extended method. Compared to a scan with a narrow collimation, our approach showed superior results with an improvement of the contrast and the contrast-to-noise ratio for the phantom experiments. In vivo data are evaluated by comparing the results with a scan with a narrow collimation and with a constant scatter correction approach.Scatter correction using primary modulation is possible on a clinical CBCT by compensating for the scanner motion and the tube current modulation. Scatter artifacts could be reduced in the reconstructions of phantom scans and in experimental in vivo data.
000128924 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000128924 588__ $$aDataset connected to CrossRef, PubMed,
000128924 7001_ $$aBerger, Martin$$b1
000128924 7001_ $$aMaier, Andreas$$b2
000128924 7001_ $$0P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aKachelrieß, Marc$$b3$$udkfz
000128924 7001_ $$aRitschl, Ludwig$$b4
000128924 7001_ $$aMüller, Kerstin$$b5
000128924 7001_ $$aChoi, Jang-Hwan$$b6
000128924 7001_ $$aFahrig, Rebecca$$b7
000128924 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.12094$$gVol. 44, no. 9, p. e125 - e137$$n9$$pe125 - e137$$tMedical physics$$v44$$x0094-2405$$y2017
000128924 909CO $$ooai:inrepo02.dkfz.de:128924$$pVDB
000128924 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000128924 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000128924 9141_ $$y2017
000128924 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2015
000128924 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000128924 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000128924 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000128924 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000128924 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000128924 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000128924 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000128924 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000128924 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000128924 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000128924 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000128924 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x0
000128924 9201_ $$0I:(DE-He78)E025-20160331$$kE025$$lRadiologie_Legacy_$$x1
000128924 980__ $$ajournal
000128924 980__ $$aVDB
000128924 980__ $$aI:(DE-He78)E020-20160331
000128924 980__ $$aI:(DE-He78)E025-20160331
000128924 980__ $$aUNRESTRICTED