001     128924
005     20240228145547.0
024 7 _ |a 10.1002/mp.12094
|2 doi
024 7 _ |a pmid:28061010
|2 pmid
024 7 _ |a 0094-2405
|2 ISSN
024 7 _ |a 1522-8541
|2 ISSN
024 7 _ |a altmetric:15267502
|2 altmetric
037 _ _ |a DKFZ-2017-04937
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Bier, Bastian
|b 0
245 _ _ |a Scatter correction using a primary modulator on a clinical angiography C-arm CT system.
260 _ _ |a New York, NY
|c 2017
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510041975_26476
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cone beam computed tomography (CBCT) suffers from a large amount of scatter, resulting in severe scatter artifacts in the reconstructions. Recently, a new scatter correction approach, called improved primary modulator scatter estimation (iPMSE), was introduced. That approach utilizes a primary modulator that is inserted between the X-ray source and the object. This modulation enables estimation of the scatter in the projection domain by optimizing an objective function with respect to the scatter estimate. Up to now the approach has not been implemented on a clinical angiography C-arm CT system.In our work, the iPMSE method is transferred to a clinical C-arm CBCT. Additional processing steps are added in order to compensate for the C-arm scanner motion and the automatic X-ray tube current modulation. These challenges were overcome by establishing a reference modulator database and a block-matching algorithm. Experiments with phantom and experimental in vivo data were performed to evaluate the method.We show that scatter correction using primary modulation is possible on a clinical C-arm CBCT. Scatter artifacts in the reconstructions are reduced with the newly extended method. Compared to a scan with a narrow collimation, our approach showed superior results with an improvement of the contrast and the contrast-to-noise ratio for the phantom experiments. In vivo data are evaluated by comparing the results with a scan with a narrow collimation and with a constant scatter correction approach.Scatter correction using primary modulation is possible on a clinical CBCT by compensating for the scanner motion and the tube current modulation. Scatter artifacts could be reduced in the reconstructions of phantom scans and in experimental in vivo data.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Berger, Martin
|b 1
700 1 _ |a Maier, Andreas
|b 2
700 1 _ |a Kachelrieß, Marc
|0 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323
|b 3
|u dkfz
700 1 _ |a Ritschl, Ludwig
|b 4
700 1 _ |a Müller, Kerstin
|b 5
700 1 _ |a Choi, Jang-Hwan
|b 6
700 1 _ |a Fahrig, Rebecca
|b 7
773 _ _ |a 10.1002/mp.12094
|g Vol. 44, no. 9, p. e125 - e137
|0 PERI:(DE-600)1466421-5
|n 9
|p e125 - e137
|t Medical physics
|v 44
|y 2017
|x 0094-2405
909 C O |o oai:inrepo02.dkfz.de:128924
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l Medizinische Physik in der Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E025-20160331
|k E025
|l Radiologie_Legacy_
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a I:(DE-He78)E025-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21