Home > Publications database > Gene promoter methylation signature predicts survival of head and neck squamous cell carcinoma patients. > print |
001 | 128951 | ||
005 | 20240228143359.0 | ||
024 | 7 | _ | |a 10.1080/15592294.2015.1137414 |2 doi |
024 | 7 | _ | |a pmid:26786582 |2 pmid |
024 | 7 | _ | |a pmc:PMC4846111 |2 pmc |
024 | 7 | _ | |a 1559-2294 |2 ISSN |
024 | 7 | _ | |a 1559-2308 |2 ISSN |
024 | 7 | _ | |a altmetric:5022330 |2 altmetric |
037 | _ | _ | |a DKFZ-2017-04963 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Kostareli, Efterpi |b 0 |
245 | _ | _ | |a Gene promoter methylation signature predicts survival of head and neck squamous cell carcinoma patients. |
260 | _ | _ | |a Austin, Tex. |c 2016 |b Landes Bioscience |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1522135899_11164 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Infection with high-risk types of human papilloma virus (HPV) is currently the best-established prognostic marker for head and neck squamous cell carcinoma (HNSCC), one of the most common and lethal human malignancies worldwide. Clinical trials have been launched to address the concept of treatment de-escalation for HPV-positive HNSCC with the final aim to reduce treatment related toxicity and debilitating long-term impacts on the quality of life. However, HPV-related tumors are mainly restricted to oropharyngeal SCC (OPSCC) and there is an urgent need to establish reliable biomarkers for all patients at high risk for treatment failure. A patient cohort (n = 295) with mainly non-OPSCC (72.9%) and a low prevalence of HPV16-related tumors (8.8%) was analyzed by MassARRAY to determine a previously established prognostic methylation score (MS). Kaplan-Meier revealed a highly significant correlation between a high MS and a favorable survival for OPSCC (P = 0.0004) and for non-OPSCC (P<0.0001), which was confirmed for all HNSCC by multivariate Cox regression models (HR: 9.67, 95% CI [4.61-20.30], P<0.0001). Next, we established a minimal methylation signature score (MMSS), which consists of ten most informative of the originally 62 CpG units used for the MS. The prognostic value of the MMSS was confirmed by Kaplan-Meier analysis for all HNSCC (P<0.0001) and non-OPSCC (P = 0.0002), and was supported by multivariate Cox regression models for all HNSCC (HR: 2.15, 95% CI [1.36-3.41], P = 0.001). In summary, the MS and the MMSS exhibit an excellent performance as prognosticators for survival, which is not limited by the anatomical site, and both could be implemented in future clinical trials. |
536 | _ | _ | |a 313 - Cancer risk factors and prevention (POF3-313) |0 G:(DE-HGF)POF3-313 |c POF3-313 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
650 | _ | 7 | |a Biomarkers, Tumor |2 NLM Chemicals |
700 | 1 | _ | |a Hielscher, Thomas |0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f |b 1 |u dkfz |
700 | 1 | _ | |a Zucknick, Manuela |b 2 |
700 | 1 | _ | |a Baboci, Lorena |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Wichmann, Gunnar |b 4 |
700 | 1 | _ | |a Holzinger, Dana |0 P:(DE-He78)d84ca2cd7f160904c387ee699735076c |b 5 |u dkfz |
700 | 1 | _ | |a Mücke, Oliver |b 6 |
700 | 1 | _ | |a Pawlita, Michael |0 P:(DE-He78)d99bad949ba3ae93859eedae5ac266da |b 7 |u dkfz |
700 | 1 | _ | |a Del Mistro, Annarosa |b 8 |
700 | 1 | _ | |a Boscolo-Rizzo, Paolo |b 9 |
700 | 1 | _ | |a Da Mosto, Maria Cristina |b 10 |
700 | 1 | _ | |a Tirelli, Giancarlo |b 11 |
700 | 1 | _ | |a Plinkert, Peter |b 12 |
700 | 1 | _ | |a Dietz, Andreas |b 13 |
700 | 1 | _ | |a Plass, Christoph |0 P:(DE-He78)4301875630bc997edf491c694ae1f8a9 |b 14 |u dkfz |
700 | 1 | _ | |a Weichenhan, Dieter |0 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f |b 15 |e Last author |u dkfz |
700 | 1 | _ | |a Hess, Jochen |0 P:(DE-He78)2e5f34f1c58eda4787a14c9dc139ca5f |b 16 |e Last author |u dkfz |
773 | _ | _ | |a 10.1080/15592294.2015.1137414 |g Vol. 11, no. 1, p. 61 - 73 |0 PERI:(DE-600)2248598-3 |n 1 |p 61 - 73 |t Epigenetics |v 11 |y 2016 |x 1559-2308 |
909 | C | O | |o oai:inrepo02.dkfz.de:128951 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)d84ca2cd7f160904c387ee699735076c |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)d99bad949ba3ae93859eedae5ac266da |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 14 |6 P:(DE-He78)4301875630bc997edf491c694ae1f8a9 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 15 |6 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 16 |6 P:(DE-He78)2e5f34f1c58eda4787a14c9dc139ca5f |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-313 |2 G:(DE-HGF)POF3-300 |v Cancer risk factors and prevention |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EPIGENETICS-US : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-He78)F020-20160331 |k F020 |l Molekulare Diagnostik Oncogener Infektionen |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C010-20160331 |k C010 |l Epigenomik und Krebsrisikofaktoren |x 1 |
920 | 1 | _ | |0 I:(DE-He78)G405-20160331 |k G405 |l Molekulare Grundlagen von HNO-Tumoren |x 2 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l Biostatistik |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)F020-20160331 |
980 | _ | _ | |a I:(DE-He78)C010-20160331 |
980 | _ | _ | |a I:(DE-He78)G405-20160331 |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|