001     130182
005     20240228143414.0
024 7 _ |a 10.1002/ijc.30069
|2 doi
024 7 _ |a pmid:26934681
|2 pmid
024 7 _ |a 0020-7136
|2 ISSN
024 7 _ |a 1097-0215
|2 ISSN
024 7 _ |a altmetric:6041404
|2 altmetric
037 _ _ |a DKFZ-2017-05262
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Mock, Andreas
|b 0
245 _ _ |a LOC283731 promoter hypermethylation prognosticates survival after radiochemotherapy in IDH1 wild-type glioblastoma patients.
260 _ _ |a Bognor Regis
|c 2016
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522155987_18537
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a MGMT promoter methylation status is currently the only established molecular prognosticator in IDH wild-type glioblastoma multiforme (GBM). Therefore, we aimed to discover novel therapy-associated epigenetic biomarkers. After enrichment for hypermethylated fractions using methyl-CpG-immunoprecipitation (MCIp), we performed global DNA methylation profiling for 14 long-term (LTS; >36 months) and 15 short-term (STS; 6-10 months) surviving GBM patients. Even after exclusion of the G-CIMP phenotype, we observed marked differences between the LTS and STS methylome. A total of 1,247 probes in 706 genes were hypermethylated in LTS and 463 probes in 305 genes were found to be hypermethylated in STS patients (p values < 0.05, log2 fold change ± 0.5). We identified 13 differentially methylated regions (DMRs) with a minimum of four differentially methylated probes per gene. Indeed, we were able to validate a subset of these DMRs through a second, independent method (MassARRAY) in our LTS/STS training set (ADCY1, GPC3, LOC283731/ISLR2). These DMRs were further assessed for their prognostic capability in an independent validation cohort (n = 62) of non-G-CIMP GBMs from the TCGA. Hypermethylation of multiple CpGs mapping to the promoter region of LOC283731 correlated with improved patient outcome (p = 0.03). The prognostic performance of LOC283731 promoter hypermethylation was confirmed in a third independent study cohort (n = 89), and was independent of gender, performance (KPS) and MGMT status (p = 0.0485, HR = 0.63). Intriguingly, the prediction was most pronounced in younger GBM patients (<60 years). In conclusion, we provide compelling evidence that promoter methylation status of this novel gene is a prognostic biomarker in IDH1 wild-type/non-G-CIMP GBMs.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Isocitrate Dehydrogenase
|0 EC 1.1.1.41
|2 NLM Chemicals
650 _ 7 |a IDH1 protein, human
|0 EC 1.1.1.42.
|2 NLM Chemicals
700 1 _ |a Geisenberger, Christoph
|b 1
700 1 _ |a Orlik, Christian
|b 2
700 1 _ |a Warta, Rolf
|b 3
700 1 _ |a Schwager, Christian
|0 P:(DE-He78)660cb858f5b7062b4ef81f3273372139
|b 4
|u dkfz
700 1 _ |a Jungk, Christine
|b 5
700 1 _ |a Dutruel, Céline
|b 6
700 1 _ |a Geiselhart, Lea
|b 7
700 1 _ |a Weichenhan, Dieter
|0 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f
|b 8
|u dkfz
700 1 _ |a Zucknick, Manuela
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Nied, Ann-Katrin
|b 10
700 1 _ |a Friauf, Sara
|b 11
700 1 _ |a Exner, Janina
|b 12
700 1 _ |a Capper, David
|0 P:(DE-He78)51bf9ae9cb5771b30c483e5597ef606c
|b 13
|u dkfz
700 1 _ |a Hartmann, Christian
|b 14
700 1 _ |a Lahrmann, Bernd
|b 15
700 1 _ |a Grabe, Niels
|b 16
700 1 _ |a Debus, Jürgen
|0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
|b 17
|u dkfz
700 1 _ |a von Deimling, Andreas
|0 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
|b 18
|u dkfz
700 1 _ |a Popanda, Odilia
|0 P:(DE-He78)37610ef78c733753f0836ce0e41b9fda
|b 19
|u dkfz
700 1 _ |a Plass, Christoph
|0 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
|b 20
|u dkfz
700 1 _ |a Unterberg, Andreas
|b 21
700 1 _ |a Abdollahi, Amir
|0 P:(DE-He78)360c5bc2b71a849e35aca747c041dda7
|b 22
|u dkfz
700 1 _ |a Schmezer, Peter
|0 P:(DE-He78)141ce740f5d881812d2675147b72ecaf
|b 23
|u dkfz
700 1 _ |a Herold-Mende, Christel
|b 24
773 _ _ |a 10.1002/ijc.30069
|g Vol. 139, no. 2, p. 424 - 432
|0 PERI:(DE-600)1474822-8
|n 2
|p 424 - 432
|t International journal of cancer
|v 139
|y 2016
|x 0020-7136
909 C O |o oai:inrepo02.dkfz.de:130182
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)660cb858f5b7062b4ef81f3273372139
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)51bf9ae9cb5771b30c483e5597ef606c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-He78)37610ef78c733753f0836ce0e41b9fda
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 22
|6 P:(DE-He78)360c5bc2b71a849e35aca747c041dda7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 23
|6 P:(DE-He78)141ce740f5d881812d2675147b72ecaf
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2016
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J CANCER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J CANCER : 2015
920 1 _ |0 I:(DE-He78)E210-20160331
|k E210
|l Translationale Radioonkologie
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)C010-20160331
|k C010
|l Epigenomik und Krebsrisikofaktoren
|x 2
920 1 _ |0 I:(DE-He78)G380-20160331
|k G380
|l KKE Neuropathologie
|x 3
920 1 _ |0 I:(DE-He78)E050-20160331
|k E050
|l KKE Strahlentherapie
|x 4
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E210-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)C010-20160331
980 _ _ |a I:(DE-He78)G380-20160331
980 _ _ |a I:(DE-He78)E050-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21