001     130255
005     20240228143419.0
024 7 _ |a 10.1038/nm.4038
|2 doi
024 7 _ |a pmid:26855150
|2 pmid
024 7 _ |a pmc:PMC4780258
|2 pmc
024 7 _ |a 1078-8956
|2 ISSN
024 7 _ |a 1546-170X
|2 ISSN
024 7 _ |a altmetric:5114426
|2 altmetric
037 _ _ |a DKFZ-2017-05335
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Noll, Elisa Marie
|0 P:(DE-He78)19623ddc45d1abf5fc016bb0d991054b
|b 0
|e First author
245 _ _ |a CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma.
260 _ _ |a New York, NY
|c 2016
|b Nature America Inc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552041784_18824
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Although subtypes of pancreatic ductal adenocarcinoma (PDAC) have been described, this malignancy is clinically still treated as a single disease. Here we present patient-derived models representing the full spectrum of previously identified quasi-mesenchymal (QM-PDA), classical and exocrine-like PDAC subtypes, and identify two markers--HNF1A and KRT81--that enable stratification of tumors into different subtypes by using immunohistochemistry. Individuals with tumors of these subtypes showed substantial differences in overall survival, and their tumors differed in drug sensitivity, with the exocrine-like subtype being resistant to tyrosine kinase inhibitors and paclitaxel. Cytochrome P450 3A5 (CYP3A5) metabolizes these compounds in tumors of the exocrine-like subtype, and pharmacological or short hairpin RNA (shRNA)-mediated CYP3A5 inhibition sensitizes tumor cells to these drugs. Whereas hepatocyte nuclear factor 4, alpha (HNF4A) controls basal expression of CYP3A5, drug-induced CYP3A5 upregulation is mediated by the nuclear receptor NR1I2. CYP3A5 also contributes to acquired drug resistance in QM-PDA and classical PDAC, and it is highly expressed in several additional malignancies. These findings designate CYP3A5 as a predictor of therapy response and as a tumor cell-autonomous detoxification mechanism that must be overcome to prevent drug resistance.
536 _ _ |a 311 - Signalling pathways, cell and tumor biology (POF3-311)
|0 G:(DE-HGF)POF3-311
|c POF3-311
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Biomarkers, Tumor
|2 NLM Chemicals
650 _ 7 |a HNF1A protein, human
|2 NLM Chemicals
650 _ 7 |a HNF4A protein, human
|2 NLM Chemicals
650 _ 7 |a Hepatocyte Nuclear Factor 1-alpha
|2 NLM Chemicals
650 _ 7 |a Hepatocyte Nuclear Factor 4
|2 NLM Chemicals
650 _ 7 |a KRT81 protein, human
|2 NLM Chemicals
650 _ 7 |a Keratins, Hair-Specific
|2 NLM Chemicals
650 _ 7 |a Keratins, Type II
|2 NLM Chemicals
650 _ 7 |a Protein Kinase Inhibitors
|2 NLM Chemicals
650 _ 7 |a Receptors, Steroid
|2 NLM Chemicals
650 _ 7 |a pregnane X receptor
|2 NLM Chemicals
650 _ 7 |a Erlotinib Hydrochloride
|0 DA87705X9K
|2 NLM Chemicals
650 _ 7 |a CYP3A5 protein, human
|0 EC 1.14.14.1
|2 NLM Chemicals
650 _ 7 |a Cytochrome P-450 CYP3A
|0 EC 1.14.14.1
|2 NLM Chemicals
650 _ 7 |a Paclitaxel
|0 P88XT4IS4D
|2 NLM Chemicals
650 _ 7 |a Dasatinib
|0 RBZ1571X5H
|2 NLM Chemicals
700 1 _ |a Eisen, Christian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Stenzinger, Albrecht
|b 2
700 1 _ |a Espinet, Elisa
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Muckenhuber, Alexander
|b 4
700 1 _ |a Klein, Corinna
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vogel, Vanessa
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Klaus, Bernd
|b 7
700 1 _ |a Nadler, Wiebke
|0 P:(DE-He78)067d470839d964b72671ab5d5e2d5a70
|b 8
700 1 _ |a Rösli, Christoph
|b 9
700 1 _ |a Lutz, Christian
|b 10
700 1 _ |a Kulke, Michael
|b 11
700 1 _ |a Engelhardt, Jan
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Zickgraf, Franziska
|0 P:(DE-He78)3fad0b8e145d744f85057abba1fdd0f3
|b 13
700 1 _ |a Espinosa, Octavio
|0 P:(DE-He78)3a3c8f74863a10048a7c322e73e0740e
|b 14
700 1 _ |a Schlesner, Matthias
|0 P:(DE-He78)f2a782242acf94a3114d75c45dc75b37
|b 15
700 1 _ |a Jiang, Xiaoqi
|0 P:(DE-He78)079436c5442874052d541943e53145ef
|b 16
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 17
700 1 _ |a Neuhaus, Peter
|b 18
700 1 _ |a Bahra, Marcus
|b 19
700 1 _ |a Sinn, Bruno V
|b 20
700 1 _ |a Eils, Roland
|0 P:(DE-He78)78b6aa82148e60b4d91e3a37a6d3d9a0
|b 21
700 1 _ |a Giese, Nathalia
|0 P:(DE-He78)ee6ac6f077e7f03250a3c17e3184a9f9
|b 22
700 1 _ |a Hackert, Thilo
|b 23
700 1 _ |a Strobel, Oliver
|b 24
700 1 _ |a Werner, Jens
|b 25
700 1 _ |a Büchler, Markus W
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Weichert, Wilko
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Trumpp, Andreas
|0 P:(DE-He78)732f4fbcddb0042251aa759a2e74d3b2
|b 28
|e Last author
700 1 _ |a Sprick, Martin
|0 P:(DE-He78)0f44fcb0b05507b0a20b175f7ba9ed1c
|b 29
|e Last author
|u dkfz
773 _ _ |a 10.1038/nm.4038
|g Vol. 22, no. 3, p. 278 - 287
|0 PERI:(DE-600)1484517-9
|n 3
|p 278 - 287
|t Nature medicine
|v 22
|y 2016
|x 1546-170X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:130255
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)19623ddc45d1abf5fc016bb0d991054b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)067d470839d964b72671ab5d5e2d5a70
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)3fad0b8e145d744f85057abba1fdd0f3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)3a3c8f74863a10048a7c322e73e0740e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)f2a782242acf94a3114d75c45dc75b37
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)079436c5442874052d541943e53145ef
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 21
|6 P:(DE-He78)78b6aa82148e60b4d91e3a37a6d3d9a0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 22
|6 P:(DE-He78)ee6ac6f077e7f03250a3c17e3184a9f9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 26
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 27
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 28
|6 P:(DE-He78)732f4fbcddb0042251aa759a2e74d3b2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 29
|6 P:(DE-He78)0f44fcb0b05507b0a20b175f7ba9ed1c
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-311
|2 G:(DE-HGF)POF3-300
|v Signalling pathways, cell and tumor biology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2016
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MED : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT MED : 2015
920 1 _ |0 I:(DE-He78)A010-20160331
|k A010
|l Stammzellen und Krebs
|x 0
920 1 _ |0 I:(DE-He78)V960-20160331
|k V960
|l HI-Stem
|x 1
920 1 _ |0 I:(DE-He78)B080-20160331
|k B080
|l Theoretische Bioinformatik
|x 2
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 3
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A010-20160331
980 _ _ |a I:(DE-He78)V960-20160331
980 _ _ |a I:(DE-He78)B080-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21