000130276 001__ 130276
000130276 005__ 20240228143421.0
000130276 0247_ $$2doi$$a10.18632/oncotarget.8612
000130276 0247_ $$2pmid$$apmid:27058758
000130276 0247_ $$2pmc$$apmc:PMC5053718
000130276 0247_ $$2altmetric$$aaltmetric:6575508
000130276 037__ $$aDKFZ-2017-05355
000130276 041__ $$aeng
000130276 082__ $$a610
000130276 1001_ $$aOh, Sekyung$$b0
000130276 245__ $$aMedulloblastoma-associated DDX3 variant selectively alters the translational response to stress.
000130276 260__ $$a[S.l.]$$bImpact Journals LLC$$c2016
000130276 3367_ $$2DRIVER$$aarticle
000130276 3367_ $$2DataCite$$aOutput Types/Journal article
000130276 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522134988_11125
000130276 3367_ $$2BibTeX$$aARTICLE
000130276 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000130276 3367_ $$00$$2EndNote$$aJournal Article
000130276 520__ $$aDDX3X encodes a DEAD-box family RNA helicase (DDX3) commonly mutated in medulloblastoma, a highly aggressive cerebellar tumor affecting both children and adults. Despite being implicated in several facets of RNA metabolism, the nature and scope of DDX3s interactions with RNA remain unclear. Here, we show DDX3 collaborates extensively with the translation initiation machinery through direct binding to 5UTRs of nearly all coding RNAs, specific sites on the 18S rRNA, and multiple components of the translation initiation complex. Impairment of translation initiation is also evident in primary medulloblastomas harboring mutations in DDX3X, further highlighting DDX3s role in this process. Arsenite-induced stress shifts DDX3 binding from the 5UTR into the coding region of mRNAs concomitant with a general reduction of translation, and both the shift of DDX3 on mRNA and decreased translation are blunted by expression of a catalytically-impaired, medulloblastoma-associated DDX3R534H variant. Furthermore, despite the global repression of translation induced by arsenite, translation is preserved on select genes involved in chromatin organization in DDX3R534H-expressing cells. Thus, DDX3 interacts extensively with RNA and ribosomal machinery to help remodel the translation landscape in response to stress, while cancer-related DDX3 variants adapt this response to selectively preserve translation.
000130276 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000130276 588__ $$aDataset connected to CrossRef, PubMed,
000130276 7001_ $$aFlynn, Ryan A$$b1
000130276 7001_ $$aFloor, Stephen N$$b2
000130276 7001_ $$aPurzner, James$$b3
000130276 7001_ $$aMartin, Lance$$b4
000130276 7001_ $$aDo, Brian T$$b5
000130276 7001_ $$aSchubert, Simone$$b6
000130276 7001_ $$aVaka, Dedeepya$$b7
000130276 7001_ $$aMorrissy, Sorana$$b8
000130276 7001_ $$aLi, Yisu$$b9
000130276 7001_ $$0P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aKool, Marcel$$b10$$udkfz
000130276 7001_ $$0P:(DE-He78)744146d3b5a3df1e0ac555e5bf1ee5cc$$aHovestadt, Volker$$b11$$udkfz
000130276 7001_ $$0P:(DE-He78)551bb92841f634070997aa168d818492$$aJones, David$$b12$$udkfz
000130276 7001_ $$0P:(DE-HGF)0$$aNorthcott, Paul A$$b13
000130276 7001_ $$aRisch, Thomas$$b14
000130276 7001_ $$aWarnatz, Hans-Jörg$$b15
000130276 7001_ $$aYaspo, Marie-Laure$$b16
000130276 7001_ $$aAdams, Christopher M$$b17
000130276 7001_ $$aLeib, Ryan D$$b18
000130276 7001_ $$aBreese, Marcus$$b19
000130276 7001_ $$aMarra, Marco A$$b20
000130276 7001_ $$aMalkin, David$$b21
000130276 7001_ $$0P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c$$aLichter, Peter$$b22$$udkfz
000130276 7001_ $$aDoudna, Jennifer A$$b23
000130276 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan$$b24$$udkfz
000130276 7001_ $$aTaylor, Michael D$$b25
000130276 7001_ $$aChang, Howard Y$$b26
000130276 7001_ $$aCho, Yoon-Jae$$b27
000130276 773__ $$0PERI:(DE-600)2560162-3$$a10.18632/oncotarget.8612$$gVol. 7, no. 19, p. 28169 - 28182$$n19$$p28169 - 28182$$tOncoTarget$$v7$$x1949-2553$$y2016
000130276 909CO $$ooai:inrepo02.dkfz.de:130276$$pVDB
000130276 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000130276 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)744146d3b5a3df1e0ac555e5bf1ee5cc$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000130276 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)551bb92841f634070997aa168d818492$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000130276 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000130276 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c$$aDeutsches Krebsforschungszentrum$$b22$$kDKFZ
000130276 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b24$$kDKFZ
000130276 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000130276 9141_ $$y2016
000130276 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bONCOTARGET : 2015
000130276 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000130276 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000130276 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000130276 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000130276 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000130276 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000130276 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000130276 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bONCOTARGET : 2015
000130276 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x0
000130276 9201_ $$0I:(DE-He78)B060-20160331$$kB060$$lMolekulare Genetik$$x1
000130276 980__ $$ajournal
000130276 980__ $$aVDB
000130276 980__ $$aI:(DE-He78)B062-20160331
000130276 980__ $$aI:(DE-He78)B060-20160331
000130276 980__ $$aUNRESTRICTED