000130291 001__ 130291
000130291 005__ 20240228143422.0
000130291 0247_ $$2doi$$a10.1186/s12864-016-2623-4
000130291 0247_ $$2pmid$$apmid:27108081
000130291 0247_ $$2pmc$$apmc:PMC4842285
000130291 0247_ $$2altmetric$$aaltmetric:6926211
000130291 037__ $$aDKFZ-2017-05370
000130291 041__ $$aeng
000130291 082__ $$a570
000130291 1001_ $$aPaco, Sonia$$b0
000130291 245__ $$aCyclic AMP signaling restricts activation and promotes maturation and antioxidant defenses in astrocytes.
000130291 260__ $$aLondon$$bBioMed Central$$c2016
000130291 3367_ $$2DRIVER$$aarticle
000130291 3367_ $$2DataCite$$aOutput Types/Journal article
000130291 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522222890_30778
000130291 3367_ $$2BibTeX$$aARTICLE
000130291 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000130291 3367_ $$00$$2EndNote$$aJournal Article
000130291 520__ $$acAMP signaling produces dramatic changes in astrocyte morphology and physiology. However, its involvement in phenotype acquisition and the transcriptionally mediated mechanisms of action are largely unknown.Here we analyzed the global transcriptome of cultured astroglial cells incubated with activators of cAMP pathways. A bulk of astroglial transcripts, 6221 annotated genes, were differentially regulated by cAMP signaling. cAMP analogs strongly upregulated genes involved in typical functions of mature astrocytes, such as homeostatic control, metabolic and structural support to neurons, antioxidant defense and communication, whereas they downregulated a considerable number of proliferating and immaturity-related transcripts. Moreover, numerous genes typically activated in reactive cells, such as scar components and immunological mediators, were repressed by cAMP. GSEA analysis contrasting gene expression profiles with transcriptome signatures of acutely isolated astrocytes and in situ evaluation of protein levels in these cells showed that cAMP signaling conferred mature and in vivo-like transcriptional features to cultured astrocytes.These results indicate that cAMP signaling is a key pathway promoting astrocyte maturation and restricting their developmental and activation features. Therefore, a positive modulation of cAMP signaling may promote the normal state of differentiated astrocytes and favor the protection and function of neuronal networks.
000130291 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000130291 588__ $$aDataset connected to CrossRef, PubMed,
000130291 650_7 $$2NLM Chemicals$$aAntioxidants
000130291 650_7 $$0E0399OZS9N$$2NLM Chemicals$$aCyclic AMP
000130291 7001_ $$0P:(DE-He78)fae4f3c76bbbd2fc21dd920b46945d42$$aHummel, Manuela$$b1$$udkfz
000130291 7001_ $$aPlá, Virginia$$b2
000130291 7001_ $$aSumoy, Lauro$$b3
000130291 7001_ $$aAguado, Fernando$$b4
000130291 773__ $$0PERI:(DE-600)2041499-7$$a10.1186/s12864-016-2623-4$$gVol. 17, no. 1, p. 304$$n1$$p304$$tBMC genomics$$v17$$x1471-2164$$y2016
000130291 909CO $$ooai:inrepo02.dkfz.de:130291$$pVDB
000130291 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fae4f3c76bbbd2fc21dd920b46945d42$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000130291 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000130291 9141_ $$y2016
000130291 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC GENOMICS : 2015
000130291 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000130291 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000130291 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000130291 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000130291 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000130291 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000130291 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000130291 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000130291 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000130291 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000130291 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000130291 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000130291 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000130291 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000130291 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x0
000130291 980__ $$ajournal
000130291 980__ $$aVDB
000130291 980__ $$aI:(DE-He78)C060-20160331
000130291 980__ $$aUNRESTRICTED