001     130398
005     20240228143430.0
024 7 _ |a 10.1371/journal.pone.0162516
|2 doi
024 7 _ |a pmid:27626802
|2 pmid
024 7 _ |a pmc:PMC5023190
|2 pmc
024 7 _ |a altmetric:12001837
|2 altmetric
037 _ _ |a DKFZ-2017-05477
041 _ _ |a eng
082 _ _ |a 500
100 1 _ |a Rengier, Fabian
|0 P:(DE-He78)a57933a3eb4602082b47da6451b97e97
|b 0
|e First author
|u dkfz
245 _ _ |a Automated 3D Volumetry of the Pulmonary Arteries based on Magnetic Resonance Angiography Has Potential for Predicting Pulmonary Hypertension.
260 _ _ |a Lawrence, Kan.
|c 2016
|b PLoS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522138342_11125
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To demonstrate feasibility of automated 3D volumetry of central pulmonary arteries based on magnetic resonance angiography (MRA), to assess pulmonary artery volumes in patients with pulmonary hypertension compared to healthy controls, and to investigate the potential of the technique for predicting pulmonary hypertension.MRA of pulmonary arteries was acquired at 1.5T in 20 patients with pulmonary arterial hypertension and 21 healthy normotensive controls. 3D model-based image analysis software was used for automated segmentation of main, right and left pulmonary arteries (MPA, RPA and LPA). Volumes indexed to vessel length and mean, minimum and maximum diameters along the entire vessel course were assessed and corrected for body surface area (BSA). For comparison, diameters were also manually measured on axial reconstructions and double oblique multiplanar reformations. Analyses were performed by two cardiovascular radiologists, and by one radiologist again after 6 months.Mean volumes of MPA, RPA and LPA for patients/controls were 5508 ± 1236/3438 ± 749, 3522 ± 934/1664 ± 468 and 3093 ± 692/1812 ± 474 μl/(cm length x m2 BSA) (all p<0.001). Mean, minimum and maximum diameters along the entire vessel course were also significantly increased in patients compared to controls (all p<0.001). Intra- and interobserver agreement were excellent for both volume and diameter measurements using 3D segmentation (intraclass correlation coefficients 0.971-0.999, p<0.001). Area under the curve for predicting pulmonary hypertension using volume was 0.998 (95% confidence interval 0.990-1.0, p<0.001), compared to 0.967 using manually measured MPA diameter (95% confidence interval 0.910-1.0, p<0.001).Automated MRA-based 3D volumetry of central pulmonary arteries is feasible and demonstrated significantly increased volumes and diameters in patients with pulmonary arterial hypertension compared to healthy controls. Pulmonary artery volume may serve as a superior predictor for pulmonary hypertension compared to manual measurements on axial images but verification in a larger study population is warranted.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a BIRC5 protein, human
|2 NLM Chemicals
650 _ 7 |a Inhibitor of Apoptosis Proteins
|2 NLM Chemicals
650 _ 7 |a Integrin alpha5beta1
|2 NLM Chemicals
650 _ 7 |a Intracellular Signaling Peptides and Proteins
|2 NLM Chemicals
650 _ 7 |a PEA15 protein, human
|2 NLM Chemicals
650 _ 7 |a Phosphoproteins
|2 NLM Chemicals
650 _ 7 |a TP53 protein, human
|2 NLM Chemicals
650 _ 7 |a Tumor Suppressor Protein p53
|2 NLM Chemicals
700 1 _ |a Wörz, Stefan
|0 P:(DE-He78)6dfd570c2b4fafb29ab11b616c6c2285
|b 1
|u dkfz
700 1 _ |a Melzig, Claudius
|b 2
700 1 _ |a Ley, Sebastian
|b 3
700 1 _ |a Fink, Christian
|b 4
700 1 _ |a Benjamin, Nicola
|b 5
700 1 _ |a Partovi, Sasan
|b 6
700 1 _ |a von Tengg-Kobligk, Hendrik
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Rohr, Karl
|0 P:(DE-He78)f1db1035ee9130131effb4f2f60553ae
|b 8
|u dkfz
700 1 _ |a Kauczor, Hans-Ulrich
|0 P:(DE-He78)cdb6ba5e925fa050ebfa816181cf5769
|b 9
|u dkfz
700 1 _ |a Grünig, Ekkehard
|b 10
773 _ _ |a 10.1371/journal.pone.0162516
|g Vol. 11, no. 9, p. e0162516 -
|0 PERI:(DE-600)2267670-3
|n 9
|p e0162516 -
|t PLoS one
|v 11
|y 2016
|x 1932-6203
909 C O |o oai:inrepo02.dkfz.de:130398
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)a57933a3eb4602082b47da6451b97e97
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)6dfd570c2b4fafb29ab11b616c6c2285
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)f1db1035ee9130131effb4f2f60553ae
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)cdb6ba5e925fa050ebfa816181cf5769
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|2 G:(DE-HGF)POF3-300
|v Functional and structural genomics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2016
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)B080-20160331
|k B080
|l Theoretische Bioinformatik
|x 0
920 1 _ |0 I:(DE-He78)E015-20160331
|k E015
|l Population Imaging
|x 1
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l Radiologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B080-20160331
980 _ _ |a I:(DE-He78)E015-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21