000130491 001__ 130491
000130491 005__ 20240228143438.0
000130491 0247_ $$2doi$$a10.1007/s00277-016-2810-z
000130491 0247_ $$2pmid$$apmid:27696203
000130491 0247_ $$2pmc$$apmc:PMC5093206
000130491 0247_ $$2ISSN$$a0939-5555
000130491 0247_ $$2ISSN$$a0945-8077
000130491 0247_ $$2ISSN$$a1432-0584
000130491 037__ $$aDKFZ-2017-05570
000130491 041__ $$aeng
000130491 082__ $$a610
000130491 1001_ $$0P:(DE-He78)d8a0e60e5e095f3161ee0de3712409bc$$aSchlenk, Richard$$b0$$eFirst author$$udkfz
000130491 245__ $$aAll-trans retinoic acid as adjunct to intensive treatment in younger adult patients with acute myeloid leukemia: results of the randomized AMLSG 07-04 study.
000130491 260__ $$aBerlin$$bSpringer61936$$c2016
000130491 264_1 $$2Crossref$$3online$$bSpringer Science and Business Media LLC$$c2016-10-03
000130491 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2016-12-01
000130491 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2016-12-01
000130491 3367_ $$2DRIVER$$aarticle
000130491 3367_ $$2DataCite$$aOutput Types/Journal article
000130491 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524813858_6707
000130491 3367_ $$2BibTeX$$aARTICLE
000130491 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000130491 3367_ $$00$$2EndNote$$aJournal Article
000130491 520__ $$aThe aim of this clinical trial was to evaluate the impact of all-trans retinoic acid (ATRA) in combination with chemotherapy and to assess the NPM1 status as biomarker for ATRA therapy in younger adult patients (18-60 years) with acute myeloid leukemia (AML). Patients were randomized for intensive chemotherapy with or without open-label ATRA (45 mg/m(2), days 6-8; 15 mg/m(2), days 9-21). Two cycles of induction therapy were followed by risk-adapted consolidation with high-dose cytarabine or allogeneic hematopoietic cell transplantation. Due to the open label character of the study, analysis was performed on an intention-to-treat (ITT) and a per-protocol (PP) basis. One thousand one hundred patients were randomized (556, STANDARD; 544, ATRA) with 38 patients treated vice versa. Median follow-up for survival was 5.2 years. ITT analyses revealed no difference between ATRA and STANDARD for the total cohort and for the subset of NPM1-mutated AML with respect to event-free (EFS; p = 0.93, p = 0.17) and overall survival (OS; p = 0.24 and p = 0.32, respectively). Pre-specified PP analyses revealed better EFS in NPM1-mutated AML (p = 0.05) and better OS in the total cohort (p = 0.03). Explorative subgroup analyses on an ITT basis revealed better OS (p = 0.05) in ATRA for genetic low-risk patients according to ELN recommendations. The clinical trial is registered at clinicaltrialsregister.eu (EudraCT Number: 2004-004321-95).
000130491 536__ $$0G:(DE-HGF)POF3-317$$a317 - Translational cancer research (POF3-317)$$cPOF3-317$$fPOF III$$x0
000130491 542__ $$2Crossref$$i2016-10-03$$uhttp://creativecommons.org/licenses/by/4.0
000130491 588__ $$aDataset connected to CrossRef, PubMed,
000130491 650_7 $$05688UTC01R$$2NLM Chemicals$$aTretinoin
000130491 7001_ $$aLübbert, Michael$$b1
000130491 7001_ $$0P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aBenner, Axel$$b2$$udkfz
000130491 7001_ $$aLamparter, Alexander$$b3
000130491 7001_ $$aKrauter, Jürgen$$b4
000130491 7001_ $$aHerr, Wolfgang$$b5
000130491 7001_ $$aMartin, Hans$$b6
000130491 7001_ $$aSalih, Helmut R$$b7
000130491 7001_ $$aKündgen, Andrea$$b8
000130491 7001_ $$aHorst, Heinz-A$$b9
000130491 7001_ $$aBrossart, Peter$$b10
000130491 7001_ $$aGötze, Katharina$$b11
000130491 7001_ $$aNachbaur, David$$b12
000130491 7001_ $$aWattad, Mohammed$$b13
000130491 7001_ $$aKöhne, Claus-Henning$$b14
000130491 7001_ $$aFiedler, Walter$$b15
000130491 7001_ $$aBentz, Martin$$b16
000130491 7001_ $$aWulf, Gerald$$b17
000130491 7001_ $$aHeld, Gerhard$$b18
000130491 7001_ $$aHertenstein, Bernd$$b19
000130491 7001_ $$aSalwender, Hans$$b20
000130491 7001_ $$aGaidzik, Verena I$$b21
000130491 7001_ $$aSchlegelberger, Brigitte$$b22
000130491 7001_ $$aWeber, Daniela$$b23
000130491 7001_ $$aDöhner, Konstanze$$b24
000130491 7001_ $$aGanser, Arnold$$b25
000130491 7001_ $$aDöhner, Hartmut$$b26
000130491 7001_ $$aGroup, German-Austrian Acute Myeloid Leukemia Study$$b27$$eCollaboration Author
000130491 77318 $$2Crossref$$3journal-article$$a10.1007/s00277-016-2810-z$$bSpringer Science and Business Media LLC$$d2016-10-03$$n12$$p1931-1942$$tAnnals of Hematology$$v95$$x0939-5555$$y2016
000130491 773__ $$0PERI:(DE-600)1458429-3$$a10.1007/s00277-016-2810-z$$gVol. 95, no. 12, p. 1931 - 1942$$n12$$p1931-1942$$tAnnals of hematology$$v95$$x0939-5555$$y2016
000130491 909CO $$ooai:inrepo02.dkfz.de:130491$$pVDB
000130491 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d8a0e60e5e095f3161ee0de3712409bc$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000130491 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000130491 9131_ $$0G:(DE-HGF)POF3-317$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTranslational cancer research$$x0
000130491 9141_ $$y2016
000130491 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000130491 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000130491 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000130491 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANN HEMATOL : 2015
000130491 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000130491 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000130491 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000130491 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000130491 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000130491 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000130491 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000130491 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000130491 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000130491 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000130491 9201_ $$0I:(DE-He78)G040-20160331$$kG040$$lKlinische Studienzentrale$$x0
000130491 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x1
000130491 9201_ $$0I:(DE-He78)G100-20160331$$kG100$$lTranslationale Onkologie$$x2
000130491 980__ $$ajournal
000130491 980__ $$aVDB
000130491 980__ $$aI:(DE-He78)G040-20160331
000130491 980__ $$aI:(DE-He78)C060-20160331
000130491 980__ $$aI:(DE-He78)G100-20160331
000130491 980__ $$aUNRESTRICTED
000130491 999C5 $$1F Lo-Coco$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa1300874$$p111 -$$tN Engl J Med$$uLo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S et al (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369(2):111–21$$v369$$y2013
000130491 999C5 $$1F Lo-Coco$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMc1513710$$p1197 -$$tN Engl J Med$$uLo-Coco F, Di Donato L, GIMEMA, Schlenk RF, German–Austrian Acute Myeloid Leukemia Study Group and Study Alliance Leukemia (2016) Targeted therapy alone for acute promyelocytic leukemia. N Engl J Med 374(12):1197–8$$v374$$y2016
000130491 999C5 $$1ZB Hu$$2Crossref$$uHu ZB, Minden MD, McCulloch EA (1995) Direct evidence for the participation of bcl-2 in the regulation by retinoic acid of the Ara-C sensitivity of leukemic stem cells. Leukemia 9:1667–73$$y1995
000130491 999C5 $$1GS Yang$$2Crossref$$uYang GS, Minden MD, McCulloch EA (1993) Influence of schedule on regulated sensitivity of AML blasts to cytosine arabinoside. Leukemia 7:1012–9$$y1993
000130491 999C5 $$1M Andreeff$$2Crossref$$9-- missing cx lookup --$$a10.1038/sj.leu.2401573$$p1881 -$$tLeukemia$$uAndreeff M, Jiang S, Zhang X, Konopleva M, Estrov Z, Snell VE et al (1999) Expression of Bcl-2-related genes in normal and AML progenitors: changes induced by chemotherapy and retinoic acid. Leukemia 13:1881–92$$v13$$y1999
000130491 999C5 $$1NJ Ketley$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood.V90.11.4578$$p4578 -$$tBlood$$uKetley NJ, Allen PD, Kelsey SM, Newland AC (1997) Modulation of idarubicin-induced apoptosis in human acute myeloid leukemia blasts by all-trans retinoic acid, 1,25(OH)2 vitamin D3, and granulocyte–macrophage colony-stimulating factor. Blood 90:4578–87$$v90$$y1997
000130491 999C5 $$1ZB Hu$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood.V92.5.1768$$p1768 -$$tBlood$$uHu ZB, Minden MD, McCulloch EA (1998) Phosphorylation of BCL-2 after exposure of human leukemic cells to retinoic acid. Blood 92:1768–75$$v92$$y1998
000130491 999C5 $$1BZ Carter$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood.V97.9.2784$$p2784 -$$tBlood$$uCarter BZ, Milella M, Altieri DC, Andreeff (2001) Cytokine-regulated expression of survivin in myeloid leukemia. Blood 97:2784–90$$v97$$y2001
000130491 999C5 $$1H Boutzen$$2Crossref$$9-- missing cx lookup --$$a10.1084/jem.20150736$$p483 -$$tJ Exp Med$$uBoutzen H, Saland E, Larrue C, de Toni F, Gales L, Castelli FA et al (2016) Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia. J Exp Med 213(4):483–97$$v213$$y2016
000130491 999C5 $$1DA Bradbury$$2Crossref$$9-- missing cx lookup --$$a10.1046/j.1365-2141.1996.d01-1838.x$$p671 -$$tBr J Haematol.$$uBradbury DA, Aldington S, Zhu YM, Russell NH (1996) Down-regulation of bcl-2 in AML blasts by alltrans retinoic acid and its relationship to CD34 antigen expression. Br J Haematol 94:671–675$$v94$$y1996
000130491 999C5 $$1R Balusu$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2010-09-309674$$p3096 -$$tBlood$$uBalusu R, Fiskus W, Rao R, Chong DG, Nalluri S, Mudunuru U et al (2011) Targeting levels or oligomerization of nucleophosmin 1 induces differentiation and loss of survival of human AML cells with mutant NPM1. Blood 118(11):3096–3106$$v118$$y2011
000130491 999C5 $$1HE Hajj$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2014-11-612416$$p3447 -$$tBlood$$uHajj HE, Dassouki Z, Berthier C, Raffoux E, Ades L, Legrand O et al (2015) Retinoic acid and arsenic trioxide trigger degradation of mutated NPM-1 resulting in apoptosis of AML cells. Blood 125(22):3447–54$$v125$$y2015
000130491 999C5 $$1MP Martelli$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2014-11-611459$$p3455 -$$tBlood$$uMartelli MP, Gionfriddo I, Mezzasoma F, Milano F, Pierangeli S, Mulas F et al (2015) Arsenic trioxide and all-trans-retinoic acid target NPM1 mutant oncoprotein levels and induce apoptosis in NPM1-mutated AML cells. Blood 125(22):3455–65$$v125$$y2015
000130491 999C5 $$1A Venditti$$2Crossref$$uVenditti A, Stasi R, Del Poeta G, Buccisano F, Aronica G, Bruno A et al (1995) All-trans retinoic acid and low-dose cytosine arabinoside for the treatment of poor prognosis acute myeloid leukemia. Leukemia 9:1121–5$$y1995
000130491 999C5 $$1EH Estey$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood.V93.8.2478$$p2478 -$$tBlood$$uEstey EH, Thall PF, Pierce S, Cortes J, Beran M, Kantarjian H et al (1999) Randomized phase II study of fludarabine + cytosine arabinoside + idarubicin +/- all-trans retinoic acid +/- granulocyte colony-stimulating factor in poor prognosis newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. Blood 93:2478–84$$v93$$y1999
000130491 999C5 $$1AK Burnett$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood.V104.11.1794.1794$$p1794 -$$tBlood$$uBurnett AK, Milligan D, Hills RK, Goldstone AH, Prentice AG, Wheatley K et al (2004) Does all-trans retinoic acid (ATRA) have a role in non-APL acute myeloid leukaemia? Results from 1666 patients in three MRC trials. Blood 104:1794$$v104$$y2004
000130491 999C5 $$1AK Burnett$$2Crossref$$9-- missing cx lookup --$$a10.1002/cncr.22496$$p1114 -$$tCancer$$uBurnett AK, Milligan D, Prentice AG, Goldstone AH, McMullin MF, Hills RK et al (2007) A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and highrisk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer 109:1114–24$$v109$$y2007
000130491 999C5 $$1DW Milligan$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2005-10-4202$$p4614 -$$tBlood$$uMilligan DW, Wheatley K, Littlewood T, Craig JI, Burnett AK, NCRI Haematological Oncology Clinical Studies Group (2006) Fludarabine and cytosine are less effective than standard ADE chemotherapy in high-risk acute myeloid leukemia, and addition of G-CSF and ATRA are not beneficial: results of the MRC AMLHR randomized trial. Blood 107:4614–22$$v107$$y2006
000130491 999C5 $$1RF Schlenk$$2Crossref$$9-- missing cx lookup --$$a10.1038/sj.leu.2403528$$p1798 -$$tLeukemia$$uSchlenk RF, Fröhling S, Hartmann F, Glasmacher A, Fischer JT, del Valle y Fuentes F et al (2004) Phase III study of all-trans retinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia. Leukemia 18:1798–803$$v18$$y2004
000130491 999C5 $$1RF Schlenk$$2Crossref$$9-- missing cx lookup --$$a10.3324/haematol.13378$$p54 -$$tHaematologica.$$uSchlenk RF, Döhner K, Kneba M, Götze K, Hartmann F, Del Valle F et al (2009) Gene mutations and response to treatment with all-trans retinoic acid in elderly patients with acute myeloid leukemia – results from AMLSG Trial AML HD98B. Haematologica 94:54–60$$v94$$y2009
000130491 999C5 $$1AK Burnett$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2009-08-236588$$p948 -$$tBlood.$$uBurnett AK, Hills RK, Green C, Jenkinson S, Koo K, Patel Y et al (2010) The impact on outcome of the addition of all-trans retinoic acid to intensive chemotherapy in younger patients with nonacute promyelocytic acute myeloid leukemia: overall results and results in genotypic subgroups defined by mutations in NPM1, FLT3, and CEBPA. Blood 115:948–956$$v115$$y2010
000130491 999C5 $$1M Tassara$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2013-12-546283$$p4027 -$$tBlood$$uTassara M, Döhner K, Brossart P, Held G, Götze K, Horst HA et al (2014) Valproic acid in combination with all-trans retinoic acid and intensive induction therapy for acute myeloid leukemia in older patients. Blood 123(26):4027–36$$v123$$y2014
000130491 999C5 $$1ES Jaffe$$2Crossref$$tPathology and genetics of tumours of haematopoietic and lymphoid tissues$$uJaffe ES, Harris NL, Stein H, Vardiman JW (2001) Pathology and genetics of tumours of haematopoietic and lymphoid tissues, 3rd edn. IARC Press, Lyon$$y2001
000130491 999C5 $$2Crossref$$uMitelman F (ed): ISCN (1995): An international system for human cytogenetic nomenclature. Basel, Switzerland, Karger, 1995
000130491 999C5 $$1RF Schlenk$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa074306$$p1909 -$$tN Engl J Med$$uSchlenk RF, Döhner K, Krauter J, Fröhling S, Corbacioglu A, Bullinger L et al (2008) Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 358(18):1909–18$$v358$$y2008
000130491 999C5 $$1RF Schlenk$$2Crossref$$9-- missing cx lookup --$$a10.1200/JCO.2010.28.6856$$p4642 -$$tJ Clin Oncol$$uSchlenk RF, Dohner K, Mack S, Stoppel M, Király F, Götze K et al (2010) Prospective evaluation of allogeneic hematopoietic stem-cell transplantation from matched related and matched unrelated donors in younger adults with high-risk acute myeloid leukemia: German-Austrian trial AMLHD98A. J Clin Oncol 28(30):4642–4648$$v28$$y2010
000130491 999C5 $$1BD Cheson$$2Crossref$$9-- missing cx lookup --$$a10.1200/JCO.2003.04.036$$p4642 -$$tJ Clin Oncol$$uCheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH et al (2003) Revised recommendations of the International working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 21(24):4642–4649$$v21$$y2003
000130491 999C5 $$1M Schemper$$2Crossref$$9-- missing cx lookup --$$a10.1016/0197-2456(96)00075-X$$p343 -$$tControl Clin Trials$$uSchemper M, Smith TL (1996) A note on quantifying follow-up in studies of failure time. Control Clin Trials 17(4):343–346$$v17$$y1996
000130491 999C5 $$1P Andersen$$2Crossref$$9-- missing cx lookup --$$a10.1214/aos/1176345976$$p1100 -$$tAnn Stat$$uAndersen P, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10:1100–1120$$v10$$y1982
000130491 999C5 $$1H Döhner$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2009-07-235358$$p453 -$$tBlood$$uDöhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK et al (2010) European LeukemiaNet. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115(3):453–474$$v115$$y2010
000130491 999C5 $$1FE Harrell$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4757-3462-1$$uHarrell FE (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, New York$$y2001
000130491 999C5 $$1R Development Core Team$$2Crossref$$tR: A language and environment for statistical computing$$uR Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna$$y2009
000130491 999C5 $$1T Büchner$$2Crossref$$9-- missing cx lookup --$$a10.1200/JCO.2012.42.2907$$p3604 -$$tJ Clin Oncol$$uBüchner T, Schlenk RF, Schaich M, Döhner K, Krahl R, Krauter J et al (2012) Acute Myeloid Leukemia (AML): different treatment strategies versus a common standard arm--combined prospective analysis by the German AML Intergroup. J Clin Oncol 30(29):3604–3610$$v30$$y2012
000130491 999C5 $$1AK Burnett$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood.V122.21.493.493$$p493 -$$tBlood$$uBurnett AK, Hills RK, Friis LS, Kjeldsen L, Milligan D, Hunter AE et al (2013) The ATRA question in AML: lack of benefit overall or in any molecular subgroup in the NCRI AML16 trial. Blood 122(21):493$$v122$$y2013
000130491 999C5 $$1WI Lencer$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMcibr1107816$$p1151 -$$tN Engl J Med$$uLencer WI, von Andrian UH (2011) Eliciting mucosal immunity. N Engl J Med 365(12):1151–3$$v365$$y2011
000130491 999C5 $$1VI Gaidzik$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2012-10-461624$$p4769 -$$tBlood$$uGaidzik VI, Schlenk RF, Paschka P, Stölzle A, Späth D, Kuendgen A et al (2013) Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: results of the AML Study Group (AMLSG). Blood 121(23):4769–77$$v121$$y2013
000130491 999C5 $$1VI Gaidzik$$2Crossref$$9-- missing cx lookup --$$a10.1038/leu.2016.126$$tLeukemia$$uGaidzik VI, Teleanu V, Papaemmanuil E, Weber D, Paschka P, Hahn J et al (2016) RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia. doi: 10.1038/leu.2016.126$$y2016
000130491 999C5 $$1P Paschka$$2Crossref$$9-- missing cx lookup --$$a10.1200/JCO.2010.28.3762$$p3636 -$$tJ Clin Oncol$$uPaschka P, Schlenk RF, Gaidzik VI, Habdank M, Krönke J, Bullinger L et al (2010) IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 28(22):3636–43$$v28$$y2010
000130491 999C5 $$1P Paschka$$2Crossref$$9-- missing cx lookup --$$a10.3324/haematol.2014.114157$$p324 -$$tHaematologica$$uPaschka P, Schlenk RF, Gaidzik VI, Herzig JK, Aulitzky T, Bullinger L et al (2015) ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German-Austrian Acute Myeloid Leukemia Study Group. Haematologica 100(3):324–30$$v100$$y2015