000130598 001__ 130598
000130598 005__ 20240228143447.0
000130598 0247_ $$2doi$$a10.3762/bjnano.7.27
000130598 0247_ $$2pmid$$apmid:26977386
000130598 0247_ $$2pmc$$apmc:PMC4778514
000130598 0247_ $$2altmetric$$aaltmetric:76689472
000130598 037__ $$aDKFZ-2017-05676
000130598 041__ $$aeng
000130598 082__ $$a620
000130598 1001_ $$0P:(DE-He78)269041b148b98643d0b660940fa66d9d$$aStaufer, Oskar$$b0$$eFirst author$$udkfz
000130598 245__ $$aFunctional fusion of living systems with synthetic electrode interfaces.
000130598 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2016
000130598 3367_ $$2DRIVER$$aarticle
000130598 3367_ $$2DataCite$$aOutput Types/Journal article
000130598 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522143720_11126
000130598 3367_ $$2BibTeX$$aARTICLE
000130598 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000130598 3367_ $$00$$2EndNote$$aJournal Article
000130598 520__ $$aThe functional fusion of 'living' biomaterial (such as cells) with synthetic systems has developed into a principal ambition for various scientific disciplines. In particular, emerging fields such as bionics and nanomedicine integrate advanced nanomaterials with biomolecules, cells and organisms in order to develop novel strategies for applications, including energy production or real-time diagnostics utilizing biomolecular machineries 'perfected' during billion years of evolution. To date, hardware-wetware interfaces that sample or modulate bioelectric potentials, such as neuroprostheses or implantable energy harvesters, are mostly based on microelectrodes brought into the closest possible contact with the targeted cells. Recently, the possibility of using electrochemical gradients of the inner ear for technical applications was demonstrated using implanted electrodes, where 1.12 nW of electrical power was harvested from the guinea pig endocochlear potential for up to 5 h (Mercier, P.; Lysaght, A.; Bandyopadhyay, S.; Chandrakasan, A.; Stankovic, K. Nat. Biotech. 2012, 30, 1240-1243). More recent approaches employ nanowires (NWs) able to penetrate the cellular membrane and to record extra- and intracellular electrical signals, in some cases with subcellular resolution (Spira, M.; Hai, A. Nat. Nano. 2013, 8, 83-94). Such techniques include nanoelectric scaffolds containing free-standing silicon NWs (Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Nat Nanotechnol. 2012, 10, 180-184) or NW field-effect transistors (Qing, Q.; Jiang, Z.; Xu, L.; Gao, R.; Mai, L.; Lieber, C. Nat. Nano. 2013, 9, 142-147), vertically aligned gallium phosphide NWs (Hällström, W.; Mårtensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Nano Lett. 2007, 7, 2960-2965) or individually contacted, electrically active carbon nanofibers. The latter of these approaches is capable of recording electrical responses from oxidative events occurring in intercellular regions of neuronal cultures (Zhang, D.; Rand, E.; Marsh, M.; Andrews, R.; Lee, K.; Meyyappan, M.; Koehne, J. Mol. Neurobiol. 2013, 48, 380-385). Employing monocrystalline gold, nanoelectrode interfaces, we have now achieved stable, functional access to the electrochemical machinery of individual Physarum polycephalum slime mold cells. We demonstrate the 'symbionic' union, allowing for electrophysiological measurements, functioning as autonomous sensors and capable of producing nanowatts of electric power. This represents a further step towards the future development of groundbreaking, cell-based technologies, such as bionic sensory systems or miniaturized energy sources to power various devices, or even 'intelligent implants', constantly refueled by their surrounding nutrients.
000130598 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000130598 588__ $$aDataset connected to CrossRef, PubMed,
000130598 7001_ $$aWeber, Sebastian$$b1
000130598 7001_ $$aBengtson, C Peter$$b2
000130598 7001_ $$aBading, Hilmar$$b3
000130598 7001_ $$aSpatz, Joachim P$$b4
000130598 7001_ $$aRustom, Amin$$b5
000130598 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.7.27$$gVol. 7, p. 296 - 301$$p296 - 301$$tBeilstein journal of nanotechnology$$v7$$x2190-4286$$y2016
000130598 909CO $$ooai:inrepo02.dkfz.de:130598$$pVDB
000130598 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)269041b148b98643d0b660940fa66d9d$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000130598 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000130598 9141_ $$y2016
000130598 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEILSTEIN J NANOTECH : 2015
000130598 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000130598 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000130598 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000130598 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000130598 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000130598 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000130598 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000130598 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000130598 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000130598 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000130598 9201_ $$0I:(DE-He78)M120-20160331$$kM120$$lLife Science Lab$$x0
000130598 980__ $$ajournal
000130598 980__ $$aVDB
000130598 980__ $$aI:(DE-He78)M120-20160331
000130598 980__ $$aUNRESTRICTED