001     130650
005     20240228143451.0
024 7 _ |a 10.18632/oncotarget.11640
|2 doi
024 7 _ |a pmid:27577081
|2 pmid
024 7 _ |a pmc:PMC5325435
|2 pmc
024 7 _ |a altmetric:10963402
|2 altmetric
037 _ _ |a DKFZ-2017-05728
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Tang, Qiuqiong
|0 P:(DE-He78)a4faf5b3a2d51ffde33f91590be3d539
|b 0
|e First author
|u dkfz
245 _ _ |a DNA methylation array analysis identifies breast cancer associated RPTOR, MGRN1 and RAPSN hypomethylation in peripheral blood DNA.
260 _ _ |a [S.l.]
|c 2016
|b Impact Journals LLC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522236306_30780
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a DNA methylation changes in peripheral blood DNA have been shown to be associated with solid tumors. We sought to identify methylation alterations in whole blood DNA that are associated with breast cancer (BC). Epigenome-wide DNA methylation profiling on blood DNA from BC cases and healthy controls was performed by applying Infinium HumanMethylation450K BeadChips. Promising CpG sites were selected and validated in three independent larger sample cohorts via MassARRAY EpiTyper assays. CpG sites located in three genes (cg06418238 in RPTOR, cg00736299 in MGRN1 and cg27466532 in RAPSN), which showed significant hypomethylation in BC patients compared to healthy controls in the discovery cohort (p < 1.00 x 10-6) were selected and successfully validated in three independent cohorts (validation I, n =211; validation II, n=378; validation III, n=520). The observed methylation differences are likely not cell-type specific, as the differences were only seen in whole blood, but not in specific sub cell-types of leucocytes. Moreover, we observed in quartile analysis that women in the lower methylation quartiles of these three loci had higher ORs than women in the higher quartiles. The combined AUC of three loci was 0.79 (95%CI 0.73-0.85) in validation cohort I, and was 0.60 (95%CI 0.54-0.66) and 0.62 (95%CI 0.57-0.67) in validation cohort II and III, respectively. Our study suggests that hypomethylation of CpG sites in RPTOR, MGRN1 and RAPSN in blood is associated with BC and might serve as blood-based marker supplements for BC if these could be verified in prospective studies.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Holland-Letz, Tim
|0 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
|b 1
|u dkfz
700 1 _ |a Slynko, Alla
|0 P:(DE-He78)4169c43af2de6fae487c89fc2e7cfaa8
|b 2
|u dkfz
700 1 _ |a Cuk, Katarina
|0 P:(DE-He78)0a8ada1f5d2ea05fc3af10cd808bfa9a
|b 3
|u dkfz
700 1 _ |a Marme, Frederik
|b 4
700 1 _ |a Schott, Sarah
|b 5
700 1 _ |a Heil, Jörg
|b 6
700 1 _ |a Qu, Bin
|b 7
700 1 _ |a Golatta, Michael
|b 8
700 1 _ |a Bewerunge-Hudler, Melanie
|b 9
700 1 _ |a Sutter, Christian
|b 10
700 1 _ |a Surowy, Harald
|0 P:(DE-He78)ec311cea9d07f894e44d05a570e26e28
|b 11
|u dkfz
700 1 _ |a Wappenschmidt, Barbara
|b 12
700 1 _ |a Schmutzler, Rita
|b 13
700 1 _ |a Hoth, Markus
|b 14
700 1 _ |a Bugert, Peter
|b 15
700 1 _ |a Bartram, Claus R
|b 16
700 1 _ |a Sohn, Christof
|b 17
700 1 _ |a Schneeweiss, Andreas
|b 18
700 1 _ |a Yang, Rongxi
|0 P:(DE-He78)dd35af1fb84ec0812fe4bdea97d2f291
|b 19
|u dkfz
700 1 _ |a Burwinkel, Barbara
|0 P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf
|b 20
|e Last author
|u dkfz
773 _ _ |a 10.18632/oncotarget.11640
|g Vol. 7, no. 39, p. 64191 - 64202
|0 PERI:(DE-600)2560162-3
|n 39
|p 64191 - 64202
|t OncoTarget
|v 7
|y 2016
|x 1949-2553
909 C O |o oai:inrepo02.dkfz.de:130650
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)a4faf5b3a2d51ffde33f91590be3d539
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)4169c43af2de6fae487c89fc2e7cfaa8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)0a8ada1f5d2ea05fc3af10cd808bfa9a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)ec311cea9d07f894e44d05a570e26e28
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-He78)dd35af1fb84ec0812fe4bdea97d2f291
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2016
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ONCOTARGET : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ONCOTARGET : 2015
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)C080-20160331
|k C080
|l Molekulare Epidemiologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)C080-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21