000130658 001__ 130658
000130658 005__ 20240228143452.0
000130658 0247_ $$2doi$$a10.1007/s10911-016-9358-3
000130658 0247_ $$2pmid$$apmid:27411687
000130658 0247_ $$2pmc$$apmc:PMC5159444
000130658 0247_ $$2ISSN$$a1083-3021
000130658 0247_ $$2ISSN$$a1573-7039
000130658 0247_ $$2altmetric$$aaltmetric:9919002
000130658 037__ $$aDKFZ-2017-05736
000130658 041__ $$aeng
000130658 082__ $$a570
000130658 1001_ $$aTenhagen, Milou$$b0
000130658 245__ $$ap120-Catenin Is Critical for the Development of Invasive Lobular Carcinoma in Mice.
000130658 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2016
000130658 3367_ $$2DRIVER$$aarticle
000130658 3367_ $$2DataCite$$aOutput Types/Journal article
000130658 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521188975_1730
000130658 3367_ $$2BibTeX$$aARTICLE
000130658 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000130658 3367_ $$00$$2EndNote$$aJournal Article
000130658 520__ $$aLoss of E-cadherin expression is causal to the development of invasive lobular breast carcinoma (ILC). E-cadherin loss leads to dismantling of the adherens junction and subsequent translocation of p120-catenin (p120) to the cytosol and nucleus. Although p120 is critical for the metastatic potential of ILC through the regulation of Rock-dependent anoikis resistance, it remains unknown whether p120 also contributes to ILC development. Using genetically engineered mouse models with mammary gland-specific inactivation of E-cadherin, p120 and p53, we demonstrate that ILC formation induced by E-cadherin and p53 loss is severely impaired upon concomitant inactivation of p120. Tumors that developed in the triple-knockout mice were mostly basal sarcomatoid carcinomas that displayed overt nuclear atypia and multinucleation. In line with the strong reduction in ILC incidence in triple-knockout mice compared to E-cadherin and p53 double-knockout mice, no functional redundancy of p120 family members was observed in mouse ILC development, as expression and localization of ARVCF, p0071 or δ-catenin was unaltered in ILCs from triple-knockout mice. In conclusion, we show that loss of p120 in the context of the p53-deficient mouse models is dominant over E-cadherin inactivation and its inactivation promotes the development of basal, epithelial-to-mesenchymal-transition (EMT)-type invasive mammary tumors.
000130658 536__ $$0G:(DE-HGF)POF3-311$$a311 - Signalling pathways, cell and tumor biology (POF3-311)$$cPOF3-311$$fPOF III$$x0
000130658 588__ $$aDataset connected to CrossRef, PubMed,
000130658 7001_ $$aKlarenbeek, Sjoerd$$b1
000130658 7001_ $$aBraumuller, Tanya M$$b2
000130658 7001_ $$0P:(DE-He78)0c4543046185361a644540fee0dad8b1$$aHofmann, Ilse$$b3$$udkfz
000130658 7001_ $$avan der Groep, Petra$$b4
000130658 7001_ $$aTer Hoeve, Natalie$$b5
000130658 7001_ $$avan der Wall, Elsken$$b6
000130658 7001_ $$aJonkers, Jos$$b7
000130658 7001_ $$aDerksen, Patrick W B$$b8
000130658 773__ $$0PERI:(DE-600)1483136-3$$a10.1007/s10911-016-9358-3$$gVol. 21, no. 3-4, p. 81 - 88$$n3-4$$p81 - 88$$tJournal of mammary gland biology and neoplasia$$v21$$x1573-7039$$y2016
000130658 909CO $$ooai:inrepo02.dkfz.de:130658$$pVDB
000130658 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0c4543046185361a644540fee0dad8b1$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000130658 9131_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000130658 9141_ $$y2016
000130658 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000130658 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000130658 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000130658 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000130658 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MAMMARY GLAND BIOL : 2015
000130658 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000130658 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000130658 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000130658 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000130658 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000130658 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000130658 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000130658 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000130658 9201_ $$0I:(DE-He78)A190-20160331$$kA190$$lVaskuläre Onkologie und Metastasierung$$x0
000130658 980__ $$ajournal
000130658 980__ $$aVDB
000130658 980__ $$aI:(DE-He78)A190-20160331
000130658 980__ $$aUNRESTRICTED