000130693 001__ 130693
000130693 005__ 20240228143454.0
000130693 0247_ $$2doi$$a10.18632/oncotarget.11452
000130693 0247_ $$2pmid$$apmid:27556362
000130693 0247_ $$2pmc$$apmc:PMC5308696
000130693 0247_ $$2altmetric$$aaltmetric:10818531
000130693 037__ $$aDKFZ-2017-05771
000130693 041__ $$aeng
000130693 082__ $$a610
000130693 1001_ $$aTzaridis, Theophilos$$b0
000130693 245__ $$aLow-dose Actinomycin-D treatment re-establishes the tumoursuppressive function of P53 in RELA-positive ependymoma.
000130693 260__ $$a[S.l.]$$bImpact Journals LLC$$c2016
000130693 3367_ $$2DRIVER$$aarticle
000130693 3367_ $$2DataCite$$aOutput Types/Journal article
000130693 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522148221_18537
000130693 3367_ $$2BibTeX$$aARTICLE
000130693 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000130693 3367_ $$00$$2EndNote$$aJournal Article
000130693 520__ $$aEpendymomas in children can arise throughout all compartments of the central nervous system (CNS). Highly malignant paediatric ependymoma subtypes are Group A tumours of the posterior fossa (PF-EPN-A) and RELA-fusion positive (ST-EPN-RELA) tumours in the supratentorial compartment. It was repeatedly reported in smaller series that accumulation of p53 is frequently observed in ependymomas and that immunohistochemical staining correlates with poor clinical outcome, while TP53 mutations are rare. Our TP53 mutation analysis of 130 primary ependymomas identified a mutation rate of only 3%. Immunohistochemical analysis of 398 ependymomas confirmed previous results correlating the accumulation of p53 with inferior outcome. Among the p53-positive ependymomas, the vast majority exhibited a RELA fusion leading to the hypothesis that p53 inactivation might be linked to RELA positivity.In order to assess the potential of p53 reactivation through MDM2 inhibition in ependymoma, we evaluated the effects of Actinomycin-D and Nutlin-3 treatment in two preclinical ependymoma models representing the high-risk subtypes PF-EPN-A and ST-EPN-RELA. The IC-50 of the agent as determined by metabolic activity assays was in the lower nano-molar range (0.2-0.7 nM). Transcriptome analyses of high-dose (100 nM), low-dose (5 nM) and non-treated cells revealed re-expression of p53 dependent genes including p53 upregulated modulator of apoptosis (PUMA) after low-dose treatment. At the protein level, we validated the Actinomycin-D induced upregulation of PUMA, and of p53 interaction partners MDM2 and p21. Proapoptotic effects of low-dose application of the agent were confirmed by flow cytometry. Thus, Actinomycin-D could constitute a promising therapeutic option for ST-EPN-RELA ependymoma patients, whose tumours frequently exhibit p53 inactivation.
000130693 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000130693 588__ $$aDataset connected to CrossRef, PubMed,
000130693 7001_ $$0P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f$$aMilde, Till$$b1$$udkfz
000130693 7001_ $$0P:(DE-He78)a7c1bbac024fa232d9c6b78443328d9d$$aPajtler, Kristian$$b2$$udkfz
000130693 7001_ $$0P:(DE-HGF)0$$aBender, Sebastian$$b3
000130693 7001_ $$0P:(DE-He78)551bb92841f634070997aa168d818492$$aJones, David$$b4$$udkfz
000130693 7001_ $$aMüller, Simone$$b5
000130693 7001_ $$0P:(DE-He78)adf0bc22f6c87d09ddb939645a7870ed$$aWittmann, Andrea$$b6$$udkfz
000130693 7001_ $$0P:(DE-He78)7dfc1463b96e8368ecf4318a574d07c6$$aSchlotter, Magdalena$$b7$$udkfz
000130693 7001_ $$aKulozik, Andreas E$$b8
000130693 7001_ $$0P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c$$aLichter, Peter$$b9$$udkfz
000130693 7001_ $$aPeter Collins, V.$$b10
000130693 7001_ $$0P:(DE-He78)143af26de9d57bf624771616318aaf7c$$aWitt, Olaf$$b11$$udkfz
000130693 7001_ $$0P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aKool, Marcel$$b12$$udkfz
000130693 7001_ $$0P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93$$aKorshunov, Andrey$$b13$$udkfz
000130693 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan$$b14$$udkfz
000130693 7001_ $$0P:(DE-He78)046fd145f1008f83f6236580727bbc0f$$aWitt, Hendrik$$b15$$eLast author$$udkfz
000130693 773__ $$0PERI:(DE-600)2560162-3$$a10.18632/oncotarget.11452$$gVol. 7, no. 38, p. 61860 - 61873$$n38$$p61860 - 61873$$tOncoTarget$$v7$$x1949-2553$$y2016
000130693 909CO $$ooai:inrepo02.dkfz.de:130693$$pVDB
000130693 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000130693 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a7c1bbac024fa232d9c6b78443328d9d$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000130693 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000130693 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)551bb92841f634070997aa168d818492$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000130693 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)adf0bc22f6c87d09ddb939645a7870ed$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000130693 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7dfc1463b96e8368ecf4318a574d07c6$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000130693 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000130693 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)143af26de9d57bf624771616318aaf7c$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000130693 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000130693 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000130693 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000130693 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)046fd145f1008f83f6236580727bbc0f$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000130693 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000130693 9141_ $$y2016
000130693 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bONCOTARGET : 2015
000130693 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000130693 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000130693 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000130693 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000130693 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000130693 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000130693 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000130693 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bONCOTARGET : 2015
000130693 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x0
000130693 9201_ $$0I:(DE-He78)G340-20160331$$kG340$$lKKE Pädiatrische Onkologie$$x1
000130693 9201_ $$0I:(DE-He78)B060-20160331$$kB060$$lMolekulare Genetik$$x2
000130693 9201_ $$0I:(DE-He78)G380-20160331$$kG380$$lKKE Neuropathologie$$x3
000130693 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x4
000130693 980__ $$ajournal
000130693 980__ $$aVDB
000130693 980__ $$aI:(DE-He78)B062-20160331
000130693 980__ $$aI:(DE-He78)G340-20160331
000130693 980__ $$aI:(DE-He78)B060-20160331
000130693 980__ $$aI:(DE-He78)G380-20160331
000130693 980__ $$aI:(DE-He78)L101-20160331
000130693 980__ $$aUNRESTRICTED