001     130693
005     20240228143454.0
024 7 _ |a 10.18632/oncotarget.11452
|2 doi
024 7 _ |a pmid:27556362
|2 pmid
024 7 _ |a pmc:PMC5308696
|2 pmc
024 7 _ |a altmetric:10818531
|2 altmetric
037 _ _ |a DKFZ-2017-05771
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Tzaridis, Theophilos
|b 0
245 _ _ |a Low-dose Actinomycin-D treatment re-establishes the tumoursuppressive function of P53 in RELA-positive ependymoma.
260 _ _ |a [S.l.]
|c 2016
|b Impact Journals LLC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522148221_18537
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ependymomas in children can arise throughout all compartments of the central nervous system (CNS). Highly malignant paediatric ependymoma subtypes are Group A tumours of the posterior fossa (PF-EPN-A) and RELA-fusion positive (ST-EPN-RELA) tumours in the supratentorial compartment. It was repeatedly reported in smaller series that accumulation of p53 is frequently observed in ependymomas and that immunohistochemical staining correlates with poor clinical outcome, while TP53 mutations are rare. Our TP53 mutation analysis of 130 primary ependymomas identified a mutation rate of only 3%. Immunohistochemical analysis of 398 ependymomas confirmed previous results correlating the accumulation of p53 with inferior outcome. Among the p53-positive ependymomas, the vast majority exhibited a RELA fusion leading to the hypothesis that p53 inactivation might be linked to RELA positivity.In order to assess the potential of p53 reactivation through MDM2 inhibition in ependymoma, we evaluated the effects of Actinomycin-D and Nutlin-3 treatment in two preclinical ependymoma models representing the high-risk subtypes PF-EPN-A and ST-EPN-RELA. The IC-50 of the agent as determined by metabolic activity assays was in the lower nano-molar range (0.2-0.7 nM). Transcriptome analyses of high-dose (100 nM), low-dose (5 nM) and non-treated cells revealed re-expression of p53 dependent genes including p53 upregulated modulator of apoptosis (PUMA) after low-dose treatment. At the protein level, we validated the Actinomycin-D induced upregulation of PUMA, and of p53 interaction partners MDM2 and p21. Proapoptotic effects of low-dose application of the agent were confirmed by flow cytometry. Thus, Actinomycin-D could constitute a promising therapeutic option for ST-EPN-RELA ependymoma patients, whose tumours frequently exhibit p53 inactivation.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Milde, Till
|0 P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f
|b 1
|u dkfz
700 1 _ |a Pajtler, Kristian
|0 P:(DE-He78)a7c1bbac024fa232d9c6b78443328d9d
|b 2
|u dkfz
700 1 _ |a Bender, Sebastian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jones, David
|0 P:(DE-He78)551bb92841f634070997aa168d818492
|b 4
|u dkfz
700 1 _ |a Müller, Simone
|b 5
700 1 _ |a Wittmann, Andrea
|0 P:(DE-He78)adf0bc22f6c87d09ddb939645a7870ed
|b 6
|u dkfz
700 1 _ |a Schlotter, Magdalena
|0 P:(DE-He78)7dfc1463b96e8368ecf4318a574d07c6
|b 7
|u dkfz
700 1 _ |a Kulozik, Andreas E
|b 8
700 1 _ |a Lichter, Peter
|0 P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c
|b 9
|u dkfz
700 1 _ |a Peter Collins, V.
|b 10
700 1 _ |a Witt, Olaf
|0 P:(DE-He78)143af26de9d57bf624771616318aaf7c
|b 11
|u dkfz
700 1 _ |a Kool, Marcel
|0 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
|b 12
|u dkfz
700 1 _ |a Korshunov, Andrey
|0 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
|b 13
|u dkfz
700 1 _ |a Pfister, Stefan
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 14
|u dkfz
700 1 _ |a Witt, Hendrik
|0 P:(DE-He78)046fd145f1008f83f6236580727bbc0f
|b 15
|e Last author
|u dkfz
773 _ _ |a 10.18632/oncotarget.11452
|g Vol. 7, no. 38, p. 61860 - 61873
|0 PERI:(DE-600)2560162-3
|n 38
|p 61860 - 61873
|t OncoTarget
|v 7
|y 2016
|x 1949-2553
909 C O |o oai:inrepo02.dkfz.de:130693
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)a7c1bbac024fa232d9c6b78443328d9d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)551bb92841f634070997aa168d818492
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)adf0bc22f6c87d09ddb939645a7870ed
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)7dfc1463b96e8368ecf4318a574d07c6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)143af26de9d57bf624771616318aaf7c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)046fd145f1008f83f6236580727bbc0f
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|2 G:(DE-HGF)POF3-300
|v Functional and structural genomics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2016
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ONCOTARGET : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ONCOTARGET : 2015
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)G340-20160331
|k G340
|l KKE Pädiatrische Onkologie
|x 1
920 1 _ |0 I:(DE-He78)B060-20160331
|k B060
|l Molekulare Genetik
|x 2
920 1 _ |0 I:(DE-He78)G380-20160331
|k G380
|l KKE Neuropathologie
|x 3
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)G340-20160331
980 _ _ |a I:(DE-He78)B060-20160331
980 _ _ |a I:(DE-He78)G380-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21