001     130791
005     20240228145553.0
024 7 _ |a 10.1186/s40658-017-0177-4
|2 doi
024 7 _ |a pmid:28251575
|2 pmid
024 7 _ |a pmc:PMC5332322
|2 pmc
037 _ _ |a DKFZ-2017-05869
041 _ _ |a eng
082 _ _ |a 530
100 1 _ |a Heußer, Thorsten
|0 0000-0002-4712-8074
|b 0
|e First author
245 _ _ |a MLAA-based attenuation correction of flexible hardware components in hybrid PET/MR imaging.
260 _ _ |a Berlin
|c 2017
|b Springer Open
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1525780102_10339
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Accurate PET quantification demands attenuation correction (AC) for both patient and hardware attenuation of the 511 keV annihilation photons. In hybrid PET/MR imaging, AC for stationary hardware components such as patient table and MR head coil is straightforward, employing CT-derived attenuation templates. AC for flexible hardware components such as MR-safe headphones and MR radiofrequency (RF) surface coils is more challenging. Registration-based approaches, aligning CT-based attenuation templates with the current patient position, have been proposed but are not used in clinical routine. Ignoring headphone or RF coil attenuation has been shown to result in regional activity underestimation values of up to 18%. We propose to employ the maximum-likelihood reconstruction of attenuation and activity (MLAA) algorithm to estimate the attenuation of flexible hardware components. Starting with an initial attenuation map not including flexible hardware components, the attenuation update of MLAA is applied outside the body outline only, allowing to estimate hardware attenuation without modifying the patient attenuation map. Appropriate prior expectations on the attenuation coefficients are incorporated into MLAA. The proposed method is investigated for non-TOF PET phantom and (18)F-FDG patient data acquired with a clinical PET/MR device, using headphones or RF surface coils as flexible hardware components.Although MLAA cannot recover the exact physical shape of the hardware attenuation maps, the overall attenuation of the hardware components is accurately estimated. Therefore, the proposed algorithm significantly improves PET quantification. Using the phantom data, local activity underestimation when neglecting hardware attenuation was reduced from up to 25% to less than 3% under- or overestimation as compared to reference scans without hardware present or to CT-derived AC. For the patient data, we found an average activity underestimation of 7.9% evaluated in the full brain and of 6.1% for the abdominal region comparing the uncorrected case with MLAA.MLAA is able to provide accurate estimations of the attenuation of flexible hardware components and can therefore be used to significantly improve PET quantification. The proposed approach can be readily incorporated into clinical workflow.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Rank, Christopher
|0 P:(DE-He78)65dc5d2a03aac87b199cba2986986d05
|b 1
|u dkfz
700 1 _ |a Berker, Yannick
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Freitag, Martin
|0 P:(DE-He78)c420f6efccb409e1a287be027501a74c
|b 3
|u dkfz
700 1 _ |a Kachelriess, Marc
|0 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.1186/s40658-017-0177-4
|g Vol. 4, no. 1, p. 12
|0 PERI:(DE-600)2768912-8
|n 1
|p 12
|t EJNMMI Physics
|v 4
|y 2017
|x 2197-7364
909 C O |o oai:inrepo02.dkfz.de:130791
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 0000-0002-4712-8074
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)65dc5d2a03aac87b199cba2986986d05
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)c420f6efccb409e1a287be027501a74c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l Medizinische Physik in der Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E025-20160331
|k E025
|l Radiologie_Legacy_
|x 1
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l Radiologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a I:(DE-He78)E025-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21