000130810 001__ 130810
000130810 005__ 20240228143459.0
000130810 0247_ $$2doi$$a10.1120/jacmp.v17i4.6117
000130810 0247_ $$2pmid$$apmid:27455484
000130810 0247_ $$2altmetric$$aaltmetric:9836771
000130810 037__ $$aDKFZ-2017-05888
000130810 041__ $$aeng
000130810 082__ $$a530
000130810 1001_ $$0P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aWahl, Niklas$$b0$$eFirst author$$udkfz
000130810 245__ $$aPhysically constrained voxel-based penalty adaptation for ultra-fast IMRT planning.
000130810 260__ $$aReston, Va.$$bACMP$$c2016
000130810 3367_ $$2DRIVER$$aarticle
000130810 3367_ $$2DataCite$$aOutput Types/Journal article
000130810 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1525762796_20626
000130810 3367_ $$2BibTeX$$aARTICLE
000130810 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000130810 3367_ $$00$$2EndNote$$aJournal Article
000130810 520__ $$aConventional treatment planning in intensity-modulated radiation therapy (IMRT) is a trial-and-error process that usually involves tedious tweaking of optimization parameters. Here, we present an algorithm that automates part of this process, in particular the adaptation of voxel-based penalties within normal tissue. Thereby, the proposed algorithm explicitly considers a priori known physical limitations of photon irradiation. The efficacy of the developed algorithm is assessed during treatment planning studies comprising 16 prostate and 5 head and neck cases. We study the eradication of hot spots in the normal tissue, effects on target coverage and target conformity, as well as selected dose volume points for organs at risk. The potential of the proposed method to generate class solutions for the two indications is investigated. Run-times of the algorithms are reported. Physically constrained voxel-based penalty adaptation is an adequate means to automatically detect and eradicate hot-spots during IMRT planning while maintaining target coverage and conformity. Negative effects on organs at risk are comparably small and restricted to lower doses. Using physically constrained voxel-based penalty adaptation, it was possible to improve the generation of class solutions for both indications. Considering the reported run-times of less than 20 s, physically constrained voxel-based penalty adaptation has the potential to reduce the clinical workload during planning and automated treatment plan generation in the long run, facilitating adaptive radiation treatments.
000130810 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000130810 588__ $$aDataset connected to CrossRef, PubMed,
000130810 7001_ $$0P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aBangert, Mark$$b1$$udkfz
000130810 7001_ $$0P:(DE-HGF)0$$aKamerling, Cornelis P$$b2
000130810 7001_ $$0P:(DE-HGF)0$$aZiegenhein, Peter$$b3
000130810 7001_ $$aBol, Gijsbert H$$b4
000130810 7001_ $$aRaaymakers, Bas W$$b5
000130810 7001_ $$0P:(DE-HGF)0$$aOelfke, Uwe$$b6$$eLast author
000130810 773__ $$0PERI:(DE-600)2010347-5$$a10.1120/jacmp.v17i4.6117$$gVol. 17, no. 4, p. 172 - 189$$n4$$p172 - 189$$tJournal of applied clinical medical physics$$v17$$x1526-9914$$y2016
000130810 909CO $$ooai:inrepo02.dkfz.de:130810$$pVDB
000130810 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000130810 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000130810 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000130810 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000130810 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000130810 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000130810 9141_ $$y2016
000130810 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL CLIN MED PHYS : 2015
000130810 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000130810 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000130810 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000130810 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000130810 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000130810 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000130810 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lMedizinische Physik in der Strahlentherapie$$x0
000130810 980__ $$ajournal
000130810 980__ $$aVDB
000130810 980__ $$aI:(DE-He78)E040-20160331
000130810 980__ $$aUNRESTRICTED