000130829 001__ 130829 000130829 005__ 20240228143500.0 000130829 0247_ $$2doi$$a10.1148/radiol.2016151617 000130829 0247_ $$2pmid$$apmid:27082780 000130829 0247_ $$2ISSN$$a0033-8419 000130829 0247_ $$2ISSN$$a1527-1315 000130829 037__ $$aDKFZ-2017-05907 000130829 041__ $$aeng 000130829 082__ $$a610 000130829 1001_ $$0P:(DE-He78)5d10a98475a036b2a1ad3c2316d4b3ab$$aWeber, Marc-Andre$$b0$$eFirst author$$udkfz 000130829 245__ $$a7-T (35)Cl and (23)Na MR Imaging for Detection of Mutation-dependent Alterations in Muscular Edema and Fat Fraction with Sodium and Chloride Concentrations in Muscular Periodic Paralyses. 000130829 260__ $$aOak Brook, Ill.$$bSoc.$$c2016 000130829 3367_ $$2DRIVER$$aarticle 000130829 3367_ $$2DataCite$$aOutput Types/Journal article 000130829 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1525763075_9511 000130829 3367_ $$2BibTeX$$aARTICLE 000130829 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000130829 3367_ $$00$$2EndNote$$aJournal Article 000130829 520__ $$aPurpose To determine whether altered sodium (Na(+)) and chloride (Cl(-)) homeostasis can be visualized in periodic paralyses by using 7-T sodium 23 ((23)Na) and chlorine 35 ((35)Cl) magnetic resonance (MR) imaging. Materials and Methods Institutional review board approval and informed consent of all participants were obtained. (23)Na (repetition time msec/echo time msec, 160/0.35) and (35)Cl (40/0.6) MR imaging of both lower legs was performed with a 7-T whole-body system in patients with genetically confirmed hypokalemic periodic paralysis (Cav1.1-R1239H mutation, n = 5; Cav1.1-R528H mutation, n = 8) and Andersen-Tawil syndrome (n = 3) and in 16 healthy volunteers. Additionally, each participant underwent 3-T proton MR imaging on the same day by using T1-weighted, short-tau inversion-recovery, and Dixon-type sequences. Muscle edema was assessed on short-tau inversion-recovery images, fatty degeneration was assessed on T1-weighted images, and muscular fat fraction was quantified with Dixon-type imaging. Na(+) and Cl(-) were quantified in the soleus muscle by using three phantoms that contained 10-, 20-, and 30-mmol/L NaCl solution and 5% agarose gel as a reference. Parametric data for all subpopulations were tested by using one-way analysis of variance with the Dunnett test, and correlations were assessed with the Spearman rank correlation coefficient. Results Median muscular (23)Na concentration was higher in patients with Cav1.1-R1239H (34.7 mmol/L, P < .001), Cav1.1-R528H (32.0 mmol/L, P < .001), and Kir2.1 (24.3 mmol/L, P = .035) mutations than in healthy volunteers (19.9 mmol/L). Median muscular normalized (35)Cl signal intensity was higher in patients with Cav1.1-R1239H (27.6, P < .001) and Cav1.1-R528H (23.6, P < .001) than in healthy volunteers (12.6), but not in patients with the Kir2.1 mutation (14.3, P = .517). When compared with volunteers, patients with Cav1.1-R1239H and Cav1.1-R528H showed increased muscular edema (P < .001 and P = .003, respectively) and muscle fat fraction (P < .001 and P = .017, respectively). Conclusion With 7-T MR imaging, changes of Na(+) and Cl(-) homeostasis can be visualized in periodic paralyses and are most pronounced in the severe phenotype Cav1.1-R1239H, with up to daily paralytic episodes. (©) RSNA, 2016 An earlier incorrect version of this article appeared online. This article was corrected on April 18, 2016. 000130829 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0 000130829 588__ $$aDataset connected to CrossRef, PubMed, 000130829 650_7 $$2NLM Chemicals$$aSodium Isotopes 000130829 650_7 $$04R7X1O2820$$2NLM Chemicals$$aChlorine 000130829 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b1$$udkfz 000130829 7001_ $$0P:(DE-He78)c6bc8de11c5017573e6c2dd76481a259$$aMarschar, Anja$$b2$$udkfz 000130829 7001_ $$0P:(DE-He78)ec15551e1bf57c41065d3502b66b1fe7$$aGlemser, Philip Alexander$$b3$$udkfz 000130829 7001_ $$aJurkat-Rott, Karin$$b4 000130829 7001_ $$0P:(DE-HGF)0$$aWolf, Maya B$$b5 000130829 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark$$b6$$udkfz 000130829 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b7$$udkfz 000130829 7001_ $$aKauczor, Hans-Ulrich$$b8 000130829 7001_ $$aLehmann-Horn, Frank$$b9 000130829 773__ $$0PERI:(DE-600)2010588-5$$a10.1148/radiol.2016151617$$gVol. 280, no. 3, p. 848 - 859$$n3$$p848 - 859$$tRadiology$$v280$$x1527-1315$$y2016 000130829 909CO $$ooai:inrepo02.dkfz.de:130829$$pVDB 000130829 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5d10a98475a036b2a1ad3c2316d4b3ab$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000130829 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000130829 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c6bc8de11c5017573e6c2dd76481a259$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ 000130829 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ec15551e1bf57c41065d3502b66b1fe7$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000130829 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ 000130829 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ 000130829 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ 000130829 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0 000130829 9141_ $$y2016 000130829 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000130829 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000130829 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000130829 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRADIOLOGY : 2015 000130829 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000130829 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000130829 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000130829 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000130829 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine 000130829 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000130829 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000130829 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bRADIOLOGY : 2015 000130829 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lRadiologie$$x0 000130829 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x1 000130829 9201_ $$0I:(DE-He78)E015-20160331$$kE015$$lPopulation Imaging$$x2 000130829 980__ $$ajournal 000130829 980__ $$aVDB 000130829 980__ $$aI:(DE-He78)E010-20160331 000130829 980__ $$aI:(DE-He78)E020-20160331 000130829 980__ $$aI:(DE-He78)E015-20160331 000130829 980__ $$aUNRESTRICTED