000130948 001__ 130948
000130948 005__ 20240228143503.0
000130948 0247_ $$2doi$$a10.1007/s11548-016-1376-5
000130948 0247_ $$2pmid$$apmid:27142459
000130948 0247_ $$2pmc$$apmc:PMC4893375
000130948 0247_ $$2ISSN$$a1861-6410
000130948 0247_ $$2ISSN$$a1861-6429
000130948 0247_ $$2altmetric$$aaltmetric:60971529
000130948 037__ $$aDKFZ-2017-06024
000130948 041__ $$aeng
000130948 082__ $$a610
000130948 1001_ $$0P:(DE-He78)f105ac59d0f6d441f098d3144e0defee$$aWirkert, Sebastian$$b0$$eFirst author$$udkfz
000130948 245__ $$aRobust near real-time estimation of physiological parameters from megapixel multispectral images with inverse Monte Carlo and random forest regression.
000130948 260__ $$aBerlin$$bSpringer$$c2016
000130948 3367_ $$2DRIVER$$aarticle
000130948 3367_ $$2DataCite$$aOutput Types/Journal article
000130948 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1525764415_20626
000130948 3367_ $$2BibTeX$$aARTICLE
000130948 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000130948 3367_ $$00$$2EndNote$$aJournal Article
000130948 520__ $$aMultispectral imaging can provide reflectance measurements at multiple spectral bands for each image pixel. These measurements can be used for estimation of important physiological parameters, such as oxygenation, which can provide indicators for the success of surgical treatment or the presence of abnormal tissue. The goal of this work was to develop a method to estimate physiological parameters in an accurate and rapid manner suited for modern high-resolution laparoscopic images.While previous methods for oxygenation estimation are based on either simple linear methods or complex model-based approaches exclusively suited for off-line processing, we propose a new approach that combines the high accuracy of model-based approaches with the speed and robustness of modern machine learning methods. Our concept is based on training random forest regressors using reflectance spectra generated with Monte Carlo simulations.According to extensive in silico and in vivo experiments, the method features higher accuracy and robustness than state-of-the-art online methods and is orders of magnitude faster than other nonlinear regression based methods.Our current implementation allows for near real-time oxygenation estimation from megapixel multispectral images and is thus well suited for online tissue analysis.
000130948 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000130948 588__ $$aDataset connected to CrossRef, PubMed,
000130948 650_7 $$2NLM Chemicals$$aHemoglobins
000130948 650_7 $$0S88TT14065$$2NLM Chemicals$$aOxygen
000130948 7001_ $$aKenngott, Hannes$$b1
000130948 7001_ $$aMayer, Benjamin$$b2
000130948 7001_ $$aMietkowski, Patrick$$b3
000130948 7001_ $$aWagner, Martin$$b4
000130948 7001_ $$aSauer, Peter$$b5
000130948 7001_ $$aClancy, Neil T$$b6
000130948 7001_ $$aElson, Daniel S$$b7
000130948 7001_ $$0P:(DE-He78)26a1176cd8450660333a012075050072$$aMaier-Hein, Lena$$b8$$eLast author$$udkfz
000130948 773__ $$0PERI:(DE-600)2235881-X$$a10.1007/s11548-016-1376-5$$gVol. 11, no. 6, p. 909 - 917$$n6$$p909 - 917$$tInternational journal of computer assisted radiology and surgery$$v11$$x1861-6429$$y2016
000130948 909CO $$ooai:inrepo02.dkfz.de:130948$$pVDB
000130948 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f105ac59d0f6d441f098d3144e0defee$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000130948 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)26a1176cd8450660333a012075050072$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000130948 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000130948 9141_ $$y2016
000130948 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000130948 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000130948 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J COMPUT ASS RAD : 2015
000130948 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000130948 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000130948 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000130948 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000130948 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000130948 9201_ $$0I:(DE-He78)E131-20160331$$kE131$$lComputer-assistierte Interventionen$$x0
000130948 980__ $$ajournal
000130948 980__ $$aVDB
000130948 980__ $$aI:(DE-He78)E131-20160331
000130948 980__ $$aUNRESTRICTED