000130957 001__ 130957
000130957 005__ 20240228145559.0
000130957 0247_ $$2doi$$a10.4049/jimmunol.1700203
000130957 0247_ $$2pmid$$apmid:28993517
000130957 0247_ $$2ISSN$$a0022-1767
000130957 0247_ $$2ISSN$$a1550-6606
000130957 0247_ $$2altmetric$$aaltmetric:27234983
000130957 037__ $$aDKFZ-2017-06033
000130957 041__ $$aeng
000130957 082__ $$a610
000130957 1001_ $$0P:(DE-He78)a4cd801173d81a4409262f88a8ecdf55$$aMichel, Chloe$$b0$$eFirst author$$udkfz
000130957 245__ $$aRevisiting the Road Map of Medullary Thymic Epithelial Cell Differentiation.
000130957 260__ $$aBethesda, Md.$$bSoc.$$c2017
000130957 3367_ $$2DRIVER$$aarticle
000130957 3367_ $$2DataCite$$aOutput Types/Journal article
000130957 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1660827735_30405
000130957 3367_ $$2BibTeX$$aARTICLE
000130957 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000130957 3367_ $$00$$2EndNote$$aJournal Article
000130957 520__ $$aThe basic two-step terminal differentiation model of the medullary thymic epithelial cell (mTEC) lineage from immature MHC class II (MHCII)(lo) to mature MHCII(hi) mTECs has recently been extended to include a third stage, namely the post-Aire MHCII(lo) subset as identified by lineage-tracing models. However, a suitable surface marker distinguishing the phenotypically overlapping pre- from the post-Aire MHCII(lo) stage has been lacking. In this study, we introduce the lectin Tetragonolobus purpureas agglutinin (TPA) as a novel cell surface marker that allows for such delineation. Based on our data, we derived the following sequence of mTEC differentiation: TPA(lo)MHCII(lo) → TPA(lo)MHCII(hi) → TPA(hi)MHCII(hi) → TPA(hi)MHCII(lo) Surprisingly, in the steady-state postnatal thymus TPA(lo)MHCII(lo) pre-Aire rather than terminally differentiated post-Aire TPA(hi)MHCII(lo) mTECs were marked for apoptosis at an exceptionally high rate of ∼70%. Hence, only the minor cycling fraction of the MHCII(lo) subset (<20%) potentially qualified as mTEC precursors. FoxN1 expression inversely correlated with the fraction of slow cycling and apoptotic cells within the four TPA subsets. TPA also further subdivided human mTECs, although with different subset distribution. Our revised road map emphazises close parallels of terminal mTEC development with that of skin, undergoing an alternative route of cell death, namely cornification rather than apoptosis. The high rate of apoptosis in pre-Aire MHCII(lo) mTECs points to a 'quality control' step during early mTEC differentiation.
000130957 536__ $$0G:(DE-HGF)POF3-314$$a314 - Tumor immunology (POF3-314)$$cPOF3-314$$fPOF III$$x0
000130957 588__ $$aDataset connected to CrossRef, PubMed,
000130957 7001_ $$aMiller, Corey N$$b1
000130957 7001_ $$0P:(DE-HGF)0$$aKüchler, Rita$$b2
000130957 7001_ $$00000-0001-5940-3101$$aBrors, Benedikt$$b3
000130957 7001_ $$aAnderson, Mark S$$b4
000130957 7001_ $$0P:(DE-He78)08a57258198dcedd8ff8ac7eef40341a$$aKyewski, Bruno$$b5$$udkfz
000130957 7001_ $$0P:(DE-He78)d2f9dbffa7b9a979f9bc4d81e769497e$$aPinto, Sheena$$b6$$eLast author$$udkfz
000130957 773__ $$0PERI:(DE-600)1475085-5$$a10.4049/jimmunol.1700203$$gVol. 199, no. 10, p. 3488 - 3503$$n10$$p3488 - 3503$$tThe journal of immunology$$v199$$x1550-6606$$y2017
000130957 909CO $$ooai:inrepo02.dkfz.de:130957$$pVDB
000130957 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a4cd801173d81a4409262f88a8ecdf55$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000130957 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000130957 9101_ $$0I:(DE-588b)2036810-0$$60000-0001-5940-3101$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000130957 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)08a57258198dcedd8ff8ac7eef40341a$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000130957 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d2f9dbffa7b9a979f9bc4d81e769497e$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000130957 9131_ $$0G:(DE-HGF)POF3-314$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTumor immunology$$x0
000130957 9141_ $$y2017
000130957 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000130957 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000130957 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000130957 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ IMMUNOL : 2015
000130957 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000130957 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000130957 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000130957 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000130957 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000130957 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000130957 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000130957 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000130957 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000130957 9201_ $$0I:(DE-He78)D090-20160331$$kD090 ; D090$$lEntwicklungsimmunologie$$x0
000130957 9201_ $$0I:(DE-He78)G200-20160331$$kG200$$lAngewandte Bioinformatik$$x1
000130957 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x2
000130957 980__ $$ajournal
000130957 980__ $$aVDB
000130957 980__ $$aI:(DE-He78)D090-20160331
000130957 980__ $$aI:(DE-He78)G200-20160331
000130957 980__ $$aI:(DE-He78)L101-20160331
000130957 980__ $$aUNRESTRICTED