000131000 001__ 131000 000131000 005__ 20240228143506.0 000131000 0247_ $$2doi$$a10.1186/s12885-016-2388-9 000131000 0247_ $$2pmid$$apmid:27268034 000131000 0247_ $$2pmc$$apmc:PMC4896000 000131000 0247_ $$2altmetric$$aaltmetric:8528428 000131000 037__ $$aDKFZ-2017-06076 000131000 041__ $$aeng 000131000 082__ $$a610 000131000 1001_ $$0P:(DE-He78)bc2630c8bb9f2fad2ab86d7b2c7c0361$$aMarin Zapata, Paula Andrea$$b0$$eFirst author$$udkfz 000131000 245__ $$aTime course decomposition of cell heterogeneity in TFEB signaling states reveals homeostatic mechanisms restricting the magnitude and duration of TFEB responses to mTOR activity modulation. 000131000 260__ $$aLondon$$bBioMed Central$$c2016 000131000 3367_ $$2DRIVER$$aarticle 000131000 3367_ $$2DataCite$$aOutput Types/Journal article 000131000 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522153598_18537 000131000 3367_ $$2BibTeX$$aARTICLE 000131000 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000131000 3367_ $$00$$2EndNote$$aJournal Article 000131000 520__ $$aTFEB (transcription factor EB) regulates metabolic homeostasis through its activation of lysosomal biogenesis following its nuclear translocation. TFEB activity is inhibited by mTOR phosphorylation, which signals its cytoplasmic retention. To date, the temporal relationship between alterations to mTOR activity states and changes in TFEB subcellular localization and concentration has not been sufficiently addressed.mTOR was activated by renewed addition of fully-supplemented medium, or inhibited by Torin1 or nutrient deprivation. Single-cell TFEB protein levels and subcellular localization in HeLa and MCF7 cells were measured over a time course of 15 hours by multispectral imaging cytometry. To extract single-cell level information on heterogeneous TFEB activity phenotypes, we developed a framework for identification of TFEB activity subpopulations. Through unsupervised clustering, cells were classified according to their TFEB nuclear concentration, which corresponded with downstream lysosomal responses.Bulk population results revealed that mTOR negatively regulates TFEB protein levels, concomitantly to the regulation of TFEB localization. Subpopulation analysis revealed maximal sensitivity of HeLa cells to mTOR activity stimulation, leading to inactivation of 100 % of the cell population within 0.5 hours, which contrasted with a lower sensitivity in MCF7 cells. Conversely, mTOR inhibition increased the fully active subpopulation only fractionally, and full activation of 100 % of the population required co-inhibition of mTOR and the proteasome. Importantly, mTOR inhibition activated TFEB for a limited duration of 1.5 hours, and thereafter the cell population was progressively re-inactivated, with distinct kinetics for Torin1 and nutrient deprivation treatments.TFEB protein levels and subcellular localization are under control of a short-term rheostat, which is highly responsive to negative regulation by mTOR, but under conditions of mTOR inhibition, restricts TFEB activation in a manner dependent on the proteasome. We further identify a long-term, mTOR-independent homeostatic control negatively regulating TFEB upon prolonged mTOR inhibition. These findings are of relevance for developing strategies to target TFEB activity in disease treatment. Moreover, our quantitative approach to decipher phenotype heterogeneity in imaging datasets is of general interest, as shifts between subpopulations provide a quantitative description of single cell behaviour, indicating novel regulatory behaviors and revealing differences between cell types. 000131000 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0 000131000 588__ $$aDataset connected to CrossRef, PubMed, 000131000 650_7 $$2NLM Chemicals$$aBasic Helix-Loop-Helix Leucine Zipper Transcription Factors 000131000 650_7 $$2NLM Chemicals$$aTFEB protein, human 000131000 650_7 $$0EC 2.7.1.1$$2NLM Chemicals$$aMTOR protein, human 000131000 650_7 $$0EC 2.7.1.1$$2NLM Chemicals$$aTOR Serine-Threonine Kinases 000131000 7001_ $$0P:(DE-HGF)0$$aBeese, Carsten Jörn$$b1 000131000 7001_ $$0P:(DE-He78)11a50a5f1511a233224b6678f371648a$$aJünger, Anja$$b2$$udkfz 000131000 7001_ $$0P:(DE-He78)867c5101ca69c6cd71785e3a3b464273$$aDalmasso, Giovanni$$b3$$udkfz 000131000 7001_ $$0P:(DE-He78)5bf984e94f0a31773a103cd293e01f92$$aBrady, Nathan R$$b4$$udkfz 000131000 7001_ $$0P:(DE-He78)a8657988a6082d4d90605e15cd5d3302$$aHamacher-Brady, Anne$$b5$$eLast author$$udkfz 000131000 773__ $$0PERI:(DE-600)2041352-X$$a10.1186/s12885-016-2388-9$$gVol. 16, no. 1, p. 355$$n1$$p355$$tBMC cancer$$v16$$x1471-2407$$y2016 000131000 909CO $$ooai:inrepo02.dkfz.de:131000$$pVDB 000131000 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bc2630c8bb9f2fad2ab86d7b2c7c0361$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000131000 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000131000 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)11a50a5f1511a233224b6678f371648a$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ 000131000 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)867c5101ca69c6cd71785e3a3b464273$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000131000 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5bf984e94f0a31773a103cd293e01f92$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ 000131000 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a8657988a6082d4d90605e15cd5d3302$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ 000131000 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0 000131000 9141_ $$y2016 000131000 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC CANCER : 2015 000131000 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000131000 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000131000 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000131000 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000131000 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000131000 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ 000131000 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000131000 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000131000 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000131000 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000131000 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000131000 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine 000131000 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000131000 9201_ $$0I:(DE-He78)B190-20160331$$kB190$$le:Bio Nachwuchsgruppe Lysosomale Systembiologie$$x0 000131000 9201_ $$0I:(DE-He78)A150-20160331$$kA150$$lSystembiologie der Signaltransduktion$$x1 000131000 9201_ $$0I:(DE-He78)B170-20160331$$kB170$$lSystembiologie von Zelltod-Mechanismen$$x2 000131000 980__ $$ajournal 000131000 980__ $$aVDB 000131000 980__ $$aI:(DE-He78)B190-20160331 000131000 980__ $$aI:(DE-He78)A150-20160331 000131000 980__ $$aI:(DE-He78)B170-20160331 000131000 980__ $$aUNRESTRICTED