000131498 001__ 131498 000131498 005__ 20240228145603.0 000131498 0247_ $$2doi$$a10.1186/s40478-017-0443-7 000131498 0247_ $$2pmid$$apmid:28532485 000131498 0247_ $$2pmc$$apmc:PMC5439117 000131498 0247_ $$2altmetric$$aaltmetric:20413486 000131498 037__ $$aDKFZ-2017-06165 000131498 041__ $$aeng 000131498 082__ $$a610 000131498 1001_ $$00000-0003-0441-4502$$aCimino, Patrick J$$b0 000131498 245__ $$aMultidimensional scaling of diffuse gliomas: application to the 2016 World Health Organization classification system with prognostically relevant molecular subtype discovery. 000131498 260__ $$aLondon$$bBiomed Central$$c2017 000131498 3367_ $$2DRIVER$$aarticle 000131498 3367_ $$2DataCite$$aOutput Types/Journal article 000131498 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1526387515_1674 000131498 3367_ $$2BibTeX$$aARTICLE 000131498 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000131498 3367_ $$00$$2EndNote$$aJournal Article 000131498 520__ $$aRecent updating of the World Health Organization (WHO) classification of central nervous system (CNS) tumors in 2016 demonstrates the first organized effort to restructure brain tumor classification by incorporating histomorphologic features with recurrent molecular alterations. Revised CNS tumor diagnostic criteria also attempt to reduce interobserver variability of histological interpretation and provide more accurate stratification related to clinical outcome. As an example, diffuse gliomas (WHO grades II-IV) are now molecularly stratified based upon isocitrate dehydrogenase 1 or 2 (IDH) mutational status, with gliomas of WHO grades II and III being substratified according to 1p/19q codeletion status. For now, grading of diffuse gliomas is still dependent upon histological parameters. Independent of WHO classification criteria, multidimensional scaling analysis of molecular signatures for diffuse gliomas from The Cancer Genome Atlas (TCGA) has identified distinct molecular subgroups, and allows for their visualization in 2-dimensional (2D) space. Using the web-based platform Oncoscape as a tool, we applied multidimensional scaling-derived molecular groups to the 2D visualization of the 2016 WHO classification of diffuse gliomas. Here we show that molecular multidimensional scaling of TCGA data provides 2D clustering that represents the 2016 WHO classification of diffuse gliomas. Additionally, we used this platform to successfully identify and define novel copy-number alteration-based molecular subtypes, which are independent of WHO grading, as well as predictive of clinical outcome. The prognostic utility of these molecular subtypes was further validated using an independent data set of the German Glioma Network prospective glioblastoma patient cohort. 000131498 536__ $$0G:(DE-HGF)POF3-319H$$a319H - Addenda (POF3-319H)$$cPOF3-319H$$fPOF III$$x0 000131498 588__ $$aDataset connected to CrossRef, PubMed, 000131498 7001_ $$aZager, Michael$$b1 000131498 7001_ $$aMcFerrin, Lisa$$b2 000131498 7001_ $$aWirsching, Hans-Georg$$b3 000131498 7001_ $$aBolouri, Hamid$$b4 000131498 7001_ $$aHentschel, Bettina$$b5 000131498 7001_ $$0P:(DE-He78)a8a10626a848d31e70cfd96a133cc144$$avon Deimling, Andreas$$b6$$udkfz 000131498 7001_ $$0P:(DE-He78)551bb92841f634070997aa168d818492$$aJones, David$$b7$$udkfz 000131498 7001_ $$aReifenberger, Guido$$b8 000131498 7001_ $$aWeller, Michael$$b9 000131498 7001_ $$aHolland, Eric C$$b10 000131498 773__ $$0PERI:(DE-600)2715589-4$$a10.1186/s40478-017-0443-7$$gVol. 5, no. 1, p. 39$$n1$$p39$$tActa Neuropathologica Communications$$v5$$x2051-5960$$y2017 000131498 909CO $$ooai:inrepo02.dkfz.de:131498$$pVDB 000131498 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a8a10626a848d31e70cfd96a133cc144$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ 000131498 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)551bb92841f634070997aa168d818492$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ 000131498 9131_ $$0G:(DE-HGF)POF3-319H$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vAddenda$$x0 000131498 9141_ $$y2017 000131498 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000131498 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000131498 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000131498 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000131498 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000131498 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ 000131498 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000131498 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index 000131498 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000131498 9201_ $$0I:(DE-He78)G380-20160331$$kG380$$lKKE Neuropathologie$$x0 000131498 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x1 000131498 980__ $$ajournal 000131498 980__ $$aVDB 000131498 980__ $$aI:(DE-He78)G380-20160331 000131498 980__ $$aI:(DE-He78)B062-20160331 000131498 980__ $$aUNRESTRICTED