000131500 001__ 131500
000131500 005__ 20240228145604.0
000131500 0247_ $$2doi$$a10.1088/1361-6560/aa8989
000131500 0247_ $$2pmid$$apmid:28858856
000131500 0247_ $$2ISSN$$a0031-9155
000131500 0247_ $$2ISSN$$a1361-6560
000131500 0247_ $$2altmetric$$aaltmetric:45255415
000131500 037__ $$aDKFZ-2017-06167
000131500 041__ $$aeng
000131500 082__ $$a570
000131500 1001_ $$0P:(DE-He78)c0d7724ccc0d258281c66fd40653c978$$aDebus, Charlotte$$b0$$eFirst author$$udkfz
000131500 245__ $$aImpact of fitting algorithms on errors of parameter estimates in dynamic contrast-enhanced MRI.
000131500 260__ $$aBristol$$bIOP Publ.$$c2017
000131500 3367_ $$2DRIVER$$aarticle
000131500 3367_ $$2DataCite$$aOutput Types/Journal article
000131500 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1533820376_16774
000131500 3367_ $$2BibTeX$$aARTICLE
000131500 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000131500 3367_ $$00$$2EndNote$$aJournal Article
000131500 520__ $$aParameter estimation in dynamic contrast-enhanced MRI (DCE MRI) is usually performed by non-linear least square (NLLS) fitting of a pharmacokinetic model to a measured concentration-time curve. The two-compartment exchange model (2CXM) describes the compartments plasma and interstitial volume and their exchange in terms of plasma flow and capillary permeability. The model function can be defined by either a system of two coupled differential equations or a closed-form analytical solution. The aim of this study was to compare these two representations in terms of accuracy, robustness and computation speed, depending on parameter combination and temporal sampling. The impact on parameter estimation errors was investigated by fitting the 2CXM to simulated concentration-time curves. Parameter combinations representing five tissue types were used, together with two arterial input functions, a measured and a theoretical population based one, to generate 4D concentration images at three different temporal resolutions. Images were fitted by NLLS techniques, where the sum of squared residuals was calculated by either numeric integration with the Runge-Kutta method or convolution. Furthermore two example cases, a prostate carcinoma and a glioblastoma multiforme patient, were analyzed in order to investigate the validity of our findings in real patient data. The convolution approach yields improved results in precision and robustness of determined parameters. Precision and stability are limited in curves with low blood flow. The model parameter v e shows great instability and little reliability in all cases. Decreased temporal resolution results in significant errors for the differential equation approach in several curve types. The convolution excelled in computational speed by three orders of magnitude. Uncertainties in parameter estimation at low temporal resolution cannot be compensated by usage of the differential equations. Fitting with the convolution approach is superior in computational time, with better stability and accuracy at the same time.
000131500 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000131500 588__ $$aDataset connected to CrossRef, PubMed,
000131500 7001_ $$0P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d$$aFloca, R.$$b1$$udkfz
000131500 7001_ $$aNörenberg, D.$$b2
000131500 7001_ $$0P:(DE-He78)360c5bc2b71a849e35aca747c041dda7$$aAbdollahi, A.$$b3$$udkfz
000131500 7001_ $$aIngrisch, M.$$b4
000131500 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/aa8989$$gVol. 62, no. 24, p. 9322 - 9340$$n24$$p9322 - 9340$$tPhysics in medicine and biology$$v62$$x1361-6560$$y2017
000131500 909CO $$ooai:inrepo02.dkfz.de:131500$$pVDB
000131500 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c0d7724ccc0d258281c66fd40653c978$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000131500 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000131500 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)360c5bc2b71a849e35aca747c041dda7$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000131500 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000131500 9141_ $$y2017
000131500 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000131500 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000131500 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2015
000131500 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000131500 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000131500 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000131500 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000131500 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000131500 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000131500 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000131500 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000131500 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000131500 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000131500 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000131500 9201_ $$0I:(DE-He78)E210-20160331$$kE210$$lTranslationale Radioonkologie$$x0
000131500 9201_ $$0I:(DE-He78)E071-20160331$$kE071$$lSoftwareentwicklung für Integrierte Diagnostik und Therapie(SIDT)$$x1
000131500 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x2
000131500 980__ $$ajournal
000131500 980__ $$aVDB
000131500 980__ $$aI:(DE-He78)E210-20160331
000131500 980__ $$aI:(DE-He78)E071-20160331
000131500 980__ $$aI:(DE-He78)L101-20160331
000131500 980__ $$aUNRESTRICTED