000131531 001__ 131531
000131531 005__ 20240228145605.0
000131531 0247_ $$2doi$$a10.1148/radiol.2017162351
000131531 0247_ $$2pmid$$apmid:28628422
000131531 0247_ $$2ISSN$$a0033-8419
000131531 0247_ $$2ISSN$$a1527-1315
000131531 0247_ $$2altmetric$$aaltmetric:21194580
000131531 037__ $$aDKFZ-2017-06195
000131531 041__ $$aeng
000131531 082__ $$a610
000131531 1001_ $$0P:(DE-He78)c6e31fb8f19e185e254174554a0cccfc$$aPaech, Daniel$$b0$$eFirst author
000131531 245__ $$aT1ρ-weighted Dynamic Glucose-enhanced MR Imaging in the Human Brain.
000131531 260__ $$aOak Brook, Ill.$$bSoc.$$c2017
000131531 3367_ $$2DRIVER$$aarticle
000131531 3367_ $$2DataCite$$aOutput Types/Journal article
000131531 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1525856168_14346
000131531 3367_ $$2BibTeX$$aARTICLE
000131531 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000131531 3367_ $$00$$2EndNote$$aJournal Article
000131531 520__ $$aPurpose To evaluate the ability to detect intracerebral regions of increased glucose concentration at T1ρ-weighted dynamic glucose-enhanced (DGE) magnetic resonance (MR) imaging at 7.0 T. Materials and Methods This prospective study was approved by the institutional review board. Nine patients with newly diagnosed glioblastoma and four healthy volunteers were included in this study from October 2015 to July 2016. Adiabatically prepared chemical exchange-sensitive spin-lock imaging was performed with a 7.0-T whole-body unit with a temporal resolution of approximately 7 seconds, yielding the time-resolved DGE contrast. T1ρ-weighted DGE MR imaging was performed with injection of 100 mL of 20% d-glucose via the cubital vein. Glucose enhancement, given by the relative signal intensity change at T1ρ-weighted MR imaging (DGEρ), was quantitatively investigated in brain gray matter versus white matter of healthy volunteers and in tumor tissue versus normal-appearing white matter of patients with glioblastoma. The median signal intensities of the assessed brain regions were compared by using the Wilcoxon rank-sum test. Results In healthy volunteers, the median signal intensity in basal ganglia gray matter (DGEρ = 4.59%) was significantly increased compared with that in white matter tissue (DGEρ = 0.65%) (P = .028). In patients, the median signal intensity in the glucose-enhanced tumor region as displayed on T1ρ-weighted DGE images (DGEρ = 2.02%) was significantly higher than that in contralateral normal-appearing white matter (DGEρ = 0.08%) (P < .0001). Conclusion T1ρ-weighted DGE MR imaging in healthy volunteers and patients with newly diagnosed, untreated glioblastoma enabled visualization of brain glucose physiology and pathophysiologically increased glucose uptake and may have the potential to provide information about glucose metabolism in tumor tissue. © RSNA, 2017 Online supplemental material is available for this article.
000131531 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000131531 588__ $$aDataset connected to CrossRef, PubMed,
000131531 650_7 $$2NLM Chemicals$$aContrast Media
000131531 650_7 $$0IY9XDZ35W2$$2NLM Chemicals$$aGlucose
000131531 7001_ $$0P:(DE-HGF)0$$aSchuenke, Patrick$$b1
000131531 7001_ $$aKoehler, Christina$$b2
000131531 7001_ $$0P:(DE-He78)98b696ed60c17f4ddd0da9fdc20a2492$$aWindschuh, Johannes$$b3
000131531 7001_ $$aMundiyanapurath, Sibu$$b4
000131531 7001_ $$0P:(DE-He78)d2d971750bce6217eb90fff9b01e61f9$$aBickelhaupt, Sebastian$$b5
000131531 7001_ $$0P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93$$aBonekamp, David$$b6
000131531 7001_ $$0P:(DE-He78)4a14b13a372ab8bf853e4b650a6bd98a$$aBäumer, Philipp$$b7
000131531 7001_ $$0P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aBachert, Peter$$b8
000131531 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark$$b9
000131531 7001_ $$aBendszus, Martin$$b10
000131531 7001_ $$0P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee$$aWick, Wolfgang$$b11
000131531 7001_ $$aUnterberg, Andreas$$b12
000131531 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b13
000131531 7001_ $$0P:(DE-He78)db923d831c5fe9b5e8fab7794dd45c44$$aZaiss, Moritz$$b14$$udkfz
000131531 7001_ $$0P:(DE-He78)77588f5b9413339755a66e739d316c7d$$aRadbruch, Alexander$$b15$$eLast author
000131531 773__ $$0PERI:(DE-600)2010588-5$$a10.1148/radiol.2017162351$$gVol. 285, no. 3, p. 914 - 922$$n3$$p914 - 922$$tRadiology$$v285$$x1527-1315$$y2017
000131531 909CO $$ooai:inrepo02.dkfz.de:131531$$pVDB
000131531 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c6e31fb8f19e185e254174554a0cccfc$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000131531 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000131531 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)98b696ed60c17f4ddd0da9fdc20a2492$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000131531 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d2d971750bce6217eb90fff9b01e61f9$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000131531 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000131531 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4a14b13a372ab8bf853e4b650a6bd98a$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000131531 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000131531 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000131531 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000131531 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000131531 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)db923d831c5fe9b5e8fab7794dd45c44$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000131531 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)77588f5b9413339755a66e739d316c7d$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000131531 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000131531 9141_ $$y2017
000131531 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000131531 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000131531 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000131531 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRADIOLOGY : 2015
000131531 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000131531 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000131531 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000131531 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000131531 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000131531 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000131531 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000131531 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bRADIOLOGY : 2015
000131531 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lRadiologie$$x0
000131531 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x1
000131531 9201_ $$0I:(DE-He78)G370-20160331$$kG370$$lKKE Neuroonkologie$$x2
000131531 9201_ $$0I:(DE-He78)E012-20160331$$kE012$$lNeuroonkologische Bildgebung$$x3
000131531 980__ $$ajournal
000131531 980__ $$aVDB
000131531 980__ $$aI:(DE-He78)E010-20160331
000131531 980__ $$aI:(DE-He78)E020-20160331
000131531 980__ $$aI:(DE-He78)G370-20160331
000131531 980__ $$aI:(DE-He78)E012-20160331
000131531 980__ $$aUNRESTRICTED