001     131717
005     20240229105009.0
024 7 _ |a 10.1016/j.scitotenv.2017.09.055
|2 doi
024 7 _ |a pmid:28898810
|2 pmid
024 7 _ |a 0048-9697
|2 ISSN
024 7 _ |a 1879-1026
|2 ISSN
037 _ _ |a DKFZ-2018-00023
041 _ _ |a eng
082 _ _ |a 333.7
100 1 _ |a Bettinetti, Roberta
|b 0
245 _ _ |a The European water-based environmental quality standard for pentachlorophenol is NOT protective of benthic organisms.
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521452000_14509
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Risk management of toxic substances is often based on Environmental Quality Standards (EQS) set for the water compartment, assuming they will also protect benthic organisms. In the absence of experimental data, EQS for sediments can be estimated by the equilibrium partitioning approach. The present study investigates whether this approach is protective of benthic organisms against pentachlorophenol (PCP), a legacy contaminant and EU priority substance still used in some parts of the world. Three freshwater species of invertebrates with different life cycles and feeding behaviors (the oligochaetes Lumbriculus variegatus, Tubifex tubifex and the dipteran insect Chironomus riparius) were exposed to PCP spiked sediments (2.10-46.03mgPCP/kg d.w. plus controls) in laboratory standard tests. Exposure duration was 28days for T. tubifex and L. variegatus and 10 and 28days for C. riparius; according to the corresponding OECD guidelines. For each investigated end-point, dose-response data were normalized to the mean control and fitted to a four-parameter log-logistic model for calculating the corresponding EC50 and EC10. The ranges for EC50 and EC10 estimates were 4.39 (Chironomus riparius-emergence)-27.50 (Tubifex tubifex-cocoon) and 0.30 (T. tubifex-young worms) -16.70 (T. tubifex-cocoon) mg/kg d.w., respectively. The EC50 and the EC10 values of L. variegatus were within these ranges. Following the EU Technical Guidance for deriving EQS, the lowest EC10 value of 0.30mg/kg (T. tubifex-young worms) resulted in a PCP quality standard (QS) for sediments of 30ng/g, about one fourth of the tentative QS of 119ng/g estimated by the equilibrium partitioning (EqP) approach. The response of benthic biota to PCP varied across organisms and across end-points for the same organism, so that the use of sediment PCP-QS calculated using the EqP-approach may be under-protective of the most sensitive organisms. Information on the possible effects of PCP on resident organisms must therefore be collected for appropriately managing aquatic systems.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 1
|u dkfz
700 1 _ |a Vignati, Davide A L
|b 2
773 _ _ |a 10.1016/j.scitotenv.2017.09.055
|g Vol. 613-614, p. 39 - 45
|0 PERI:(DE-600)1498726-0
|p 39 - 45
|t The science of the total environment
|v 613-614
|y 2018
|x 0048-9697
909 C O |o oai:inrepo02.dkfz.de:131717
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI TOTAL ENVIRON : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21