000131723 001__ 131723
000131723 005__ 20240229111721.0
000131723 0247_ $$2doi$$a10.1016/j.ijcard.2017.08.062
000131723 0247_ $$2pmid$$apmid:29169757
000131723 0247_ $$2ISSN$$a0167-5273
000131723 0247_ $$2ISSN$$a1874-1754
000131723 0247_ $$2altmetric$$aaltmetric:29449157
000131723 037__ $$aDKFZ-2018-00029
000131723 041__ $$aeng
000131723 082__ $$a610
000131723 1001_ $$aJansen, Henning$$b0
000131723 245__ $$aHs-cTroponins for the prediction of recurrent cardiovascular events in patients with established CHD - A comparative analysis from the KAROLA study.
000131723 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000131723 3367_ $$2DRIVER$$aarticle
000131723 3367_ $$2DataCite$$aOutput Types/Journal article
000131723 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552895694_3634
000131723 3367_ $$2BibTeX$$aARTICLE
000131723 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000131723 3367_ $$00$$2EndNote$$aJournal Article
000131723 520__ $$aHigh-sensitivity Troponins (hs-cTnT and hs-cTnI) are established biomarkers to identify patients with an acute myocardial infarction. However, data comparing the capacity of these two subtypes in predicting recurrent cardiovascular disease (CVD) events in a population with stable coronary heart disease (CHD) after adjustment for several other modern biomarkers are lacking.We measured both troponins at baseline in 1068 CHD patients, followed them for 13years, assessed a combined CVD endpoint, and adjusted for multiple traditional and novel risk factors.Both troponins correlated significantly with age, low and high BMI, male gender, statin therapy, and emerging biomarkers (e.g. cystatin C, NT-proBNP, GDF-15, hsCRP or galectin 3). During follow-up of 13years, 267 fatal and non-fatal CVD events occurred. Top quartiles of both troponin concentrations were significantly associated with CVD events compared to the bottom quartile after adjustment for age, gender and established CVD risk factors (hs-cTnT: hazard ratio (HR) 2.54 (95% CI, 1.60-4.03), p for trend: <0.0001; hs-cTnI: HR 2.20 (95% CI, 1.44-3.36), p for trend: <0.0002 and 0.0003). However, after adjustment for other emerging biomarkers, the associations were no longer statistically significant (hs-cTnT: HR 1.63 (95% CI, 0.97-2.73), p for trend: 0.17; hs-cTnI: HR 1.61 (95% CI, 1.00-2.60), p for trend: 0.067).Both troponins are reliable biomarkers of recurrent cardiovascular events, especially if other novel, important markers such as NT-proBNP, GDF-15 and galectin 3 are not available. Nevertheless, a further workup is still needed to explain the complex interaction of biomarkers indicating vascular and myocardial function.
000131723 536__ $$0G:(DE-HGF)POF3-323$$a323 - Metabolic Dysfunction as Risk Factor (POF3-323)$$cPOF3-323$$fPOF III$$x0
000131723 588__ $$aDataset connected to CrossRef, PubMed,
000131723 7001_ $$aJänsch, Andrea$$b1
000131723 7001_ $$0P:(DE-He78)3fac2587a7d28ae277ed2440b163d313$$aBreitling, Lutz$$b2$$udkfz
000131723 7001_ $$0P:(DE-He78)747b703d2a306c4276ea9e4ee9b5fe44$$aHoppe, Liesa$$b3
000131723 7001_ $$aDallmeier, Dhayana$$b4
000131723 7001_ $$aSchmucker, Roman$$b5
000131723 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b6
000131723 7001_ $$aKoenig, Wolfgang$$b7
000131723 7001_ $$aRothenbacher, Dietrich$$b8
000131723 773__ $$0PERI:(DE-600)1500478-8$$a10.1016/j.ijcard.2017.08.062$$gVol. 250, p. 247 - 252$$p247 - 252$$tInternational journal of cardiology$$v250$$x0167-5273$$y2018
000131723 909CO $$ooai:inrepo02.dkfz.de:131723$$pVDB
000131723 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3fac2587a7d28ae277ed2440b163d313$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000131723 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)747b703d2a306c4276ea9e4ee9b5fe44$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000131723 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000131723 9131_ $$0G:(DE-HGF)POF3-323$$1G:(DE-HGF)POF3-320$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lHerz-Kreislauf-Stoffwechselerkrankungen$$vMetabolic Dysfunction as Risk Factor$$x0
000131723 9141_ $$y2018
000131723 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000131723 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000131723 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000131723 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CARDIOL : 2015
000131723 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000131723 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000131723 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000131723 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000131723 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000131723 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000131723 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000131723 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000131723 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000131723 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000131723 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000131723 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lKlinische Epidemiologie und Alternsforschung$$x0
000131723 9201_ $$0I:(DE-He78)G110-20160331$$kG110$$lPräventive Onkologie$$x1
000131723 980__ $$ajournal
000131723 980__ $$aVDB
000131723 980__ $$aI:(DE-He78)C070-20160331
000131723 980__ $$aI:(DE-He78)G110-20160331
000131723 980__ $$aUNRESTRICTED