001     131723
005     20240229111721.0
024 7 _ |a 10.1016/j.ijcard.2017.08.062
|2 doi
024 7 _ |a pmid:29169757
|2 pmid
024 7 _ |a 0167-5273
|2 ISSN
024 7 _ |a 1874-1754
|2 ISSN
024 7 _ |a altmetric:29449157
|2 altmetric
037 _ _ |a DKFZ-2018-00029
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Jansen, Henning
|b 0
245 _ _ |a Hs-cTroponins for the prediction of recurrent cardiovascular events in patients with established CHD - A comparative analysis from the KAROLA study.
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552895694_3634
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High-sensitivity Troponins (hs-cTnT and hs-cTnI) are established biomarkers to identify patients with an acute myocardial infarction. However, data comparing the capacity of these two subtypes in predicting recurrent cardiovascular disease (CVD) events in a population with stable coronary heart disease (CHD) after adjustment for several other modern biomarkers are lacking.We measured both troponins at baseline in 1068 CHD patients, followed them for 13years, assessed a combined CVD endpoint, and adjusted for multiple traditional and novel risk factors.Both troponins correlated significantly with age, low and high BMI, male gender, statin therapy, and emerging biomarkers (e.g. cystatin C, NT-proBNP, GDF-15, hsCRP or galectin 3). During follow-up of 13years, 267 fatal and non-fatal CVD events occurred. Top quartiles of both troponin concentrations were significantly associated with CVD events compared to the bottom quartile after adjustment for age, gender and established CVD risk factors (hs-cTnT: hazard ratio (HR) 2.54 (95% CI, 1.60-4.03), p for trend: <0.0001; hs-cTnI: HR 2.20 (95% CI, 1.44-3.36), p for trend: <0.0002 and 0.0003). However, after adjustment for other emerging biomarkers, the associations were no longer statistically significant (hs-cTnT: HR 1.63 (95% CI, 0.97-2.73), p for trend: 0.17; hs-cTnI: HR 1.61 (95% CI, 1.00-2.60), p for trend: 0.067).Both troponins are reliable biomarkers of recurrent cardiovascular events, especially if other novel, important markers such as NT-proBNP, GDF-15 and galectin 3 are not available. Nevertheless, a further workup is still needed to explain the complex interaction of biomarkers indicating vascular and myocardial function.
536 _ _ |a 323 - Metabolic Dysfunction as Risk Factor (POF3-323)
|0 G:(DE-HGF)POF3-323
|c POF3-323
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Jänsch, Andrea
|b 1
700 1 _ |a Breitling, Lutz
|0 P:(DE-He78)3fac2587a7d28ae277ed2440b163d313
|b 2
|u dkfz
700 1 _ |a Hoppe, Liesa
|0 P:(DE-He78)747b703d2a306c4276ea9e4ee9b5fe44
|b 3
700 1 _ |a Dallmeier, Dhayana
|b 4
700 1 _ |a Schmucker, Roman
|b 5
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 6
700 1 _ |a Koenig, Wolfgang
|b 7
700 1 _ |a Rothenbacher, Dietrich
|b 8
773 _ _ |a 10.1016/j.ijcard.2017.08.062
|g Vol. 250, p. 247 - 252
|0 PERI:(DE-600)1500478-8
|p 247 - 252
|t International journal of cardiology
|v 250
|y 2018
|x 0167-5273
909 C O |p VDB
|o oai:inrepo02.dkfz.de:131723
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)3fac2587a7d28ae277ed2440b163d313
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)747b703d2a306c4276ea9e4ee9b5fe44
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Herz-Kreislauf-Stoffwechselerkrankungen
|1 G:(DE-HGF)POF3-320
|0 G:(DE-HGF)POF3-323
|2 G:(DE-HGF)POF3-300
|v Metabolic Dysfunction as Risk Factor
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J CARDIOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
920 1 _ |0 I:(DE-He78)G110-20160331
|k G110
|l Präventive Onkologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)G110-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21