000131738 001__ 131738
000131738 005__ 20240229105010.0
000131738 0247_ $$2doi$$a10.1016/j.expneurol.2017.09.012
000131738 0247_ $$2pmid$$apmid:28974375
000131738 0247_ $$2ISSN$$a0014-4886
000131738 0247_ $$2ISSN$$a1090-2430
000131738 0247_ $$2altmetric$$aaltmetric:27041988
000131738 037__ $$aDKFZ-2018-00044
000131738 041__ $$aeng
000131738 082__ $$a610
000131738 1001_ $$aSeyrantepe, Volkan$$b0
000131738 245__ $$aMurine Sialidase Neu3 facilitates GM2 degradation and bypass in mouse model of Tay-Sachs disease.
000131738 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018
000131738 3367_ $$2DRIVER$$aarticle
000131738 3367_ $$2DataCite$$aOutput Types/Journal article
000131738 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521450942_7049
000131738 3367_ $$2BibTeX$$aARTICLE
000131738 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000131738 3367_ $$00$$2EndNote$$aJournal Article
000131738 520__ $$aTay-Sachs disease is a severe lysosomal storage disorder caused by mutations in Hexa, the gene that encodes for the α subunit of lysosomal β-hexosaminidase A (HEXA), which converts GM2 to GM3 ganglioside. Unexpectedly, Hexa-/- mice have a normal lifespan and show no obvious neurological impairment until at least one year of age. These mice catabolize stored GM2 ganglioside using sialidase(s) to remove sialic acid and form the glycolipid GA2, which is further processed by β-hexosaminidase B. Therefore, the presence of the sialidase (s) allows the consequences of the Hexa defect to be bypassed. To determine if the sialidase NEU3 contributes to GM2 ganglioside degradation, we generated a mouse model with combined deficiencies of HEXA and NEU3. The Hexa-/-Neu3-/- mice were healthy at birth, but died at 1.5 to 4.5months of age. Thin-layer chromatography and mass spectrometric analysis of the brains of Hexa-/-Neu3-/- mice revealed the abnormal accumulation of GM2 ganglioside. Histological and immunohistochemical analysis demonstrated cytoplasmic vacuolation in the neurons. Electron microscopic examination of the brain, kidneys and testes revealed pleomorphic inclusions of many small vesicles and complex lamellar structures. The Hexa-/-Neu3-/- mice exhibited progressive neurodegeneration with neuronal loss, Purkinje cell depletion, and astrogliosis. Slow movement, ataxia, and tremors were the prominent neurological abnormalities observed in these mice. Furthermore, radiographs revealed abnormalities in the skeletal bones of the Hexa-/-Neu3-/- mice. Thus, the Hexa-/-Neu3-/- mice mimic the neuropathological and clinical abnormalities of the classical early-onset Tay-Sachs patients, and provide a suitable model for the future pre-clinical testing of potential treatments for this condition.
000131738 536__ $$0G:(DE-HGF)POF3-317$$a317 - Translational cancer research (POF3-317)$$cPOF3-317$$fPOF III$$x0
000131738 588__ $$aDataset connected to CrossRef, PubMed,
000131738 650_7 $$2NLM Chemicals$$aGlycosphingolipids
000131738 650_7 $$0EC 3.2.1.18$$2NLM Chemicals$$aNeu3 protein, mouse
000131738 650_7 $$0EC 3.2.1.18$$2NLM Chemicals$$aNeuraminidase
000131738 650_7 $$0EC 3.2.1.52$$2NLM Chemicals$$aHexosaminidase B
000131738 7001_ $$aDemir, Secil Akyildiz$$b1
000131738 7001_ $$aTimur, Zehra Kevser$$b2
000131738 7001_ $$0P:(DE-He78)6565c340d78174caba1097b0f275550e$$aVon Gerichten, Johanna$$b3$$udkfz
000131738 7001_ $$0P:(DE-HGF)0$$aMarsching, Christian$$b4
000131738 7001_ $$aErdemli, Esra$$b5
000131738 7001_ $$aOztas, Emin$$b6
000131738 7001_ $$aTakahashi, Kohta$$b7
000131738 7001_ $$aYamaguchi, Kazunori$$b8
000131738 7001_ $$aAtes, Nurselin$$b9
000131738 7001_ $$aDönmez Demir, Buket$$b10
000131738 7001_ $$aDalkara, Turgay$$b11
000131738 7001_ $$aErich, Katrin$$b12
000131738 7001_ $$aHopf, Carsten$$b13
000131738 7001_ $$0P:(DE-He78)a928ded2085c8911822370cad0b4a728$$aSandhoff, Roger$$b14$$udkfz
000131738 7001_ $$aMiyagi, Taeko$$b15
000131738 773__ $$0PERI:(DE-600)1466932-8$$a10.1016/j.expneurol.2017.09.012$$gVol. 299, no. Pt A, p. 26 - 41$$nPt A$$p26 - 41$$tExperimental neurology$$v299$$x0014-4886$$y2018
000131738 909CO $$ooai:inrepo02.dkfz.de:131738$$pVDB
000131738 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6565c340d78174caba1097b0f275550e$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000131738 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000131738 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a928ded2085c8911822370cad0b4a728$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000131738 9131_ $$0G:(DE-HGF)POF3-317$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTranslational cancer research$$x0
000131738 9141_ $$y2018
000131738 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000131738 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000131738 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000131738 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000131738 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEXP NEUROL : 2015
000131738 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000131738 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000131738 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000131738 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000131738 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000131738 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000131738 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000131738 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000131738 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000131738 9201_ $$0I:(DE-He78)G131-20160331$$kG131$$lAG Lipid-Pathobiochemie$$x0
000131738 980__ $$ajournal
000131738 980__ $$aVDB
000131738 980__ $$aI:(DE-He78)G131-20160331
000131738 980__ $$aUNRESTRICTED