000131802 001__ 131802
000131802 005__ 20240229105014.0
000131802 0247_ $$2doi$$a10.1038/s41598-017-18477-6
000131802 0247_ $$2pmid$$apmid:29321555
000131802 0247_ $$2pmc$$apmc:PMC5762902
000131802 0247_ $$2altmetric$$aaltmetric:31632988
000131802 037__ $$aDKFZ-2018-00099
000131802 041__ $$aeng
000131802 082__ $$a000
000131802 1001_ $$aRabe, Jan-Hinrich$$b0
000131802 245__ $$aFourier Transform Infrared Microscopy Enables Guidance of Automated Mass Spectrometry Imaging to Predefined Tissue Morphologies.
000131802 260__ $$aLondon$$bNature Publishing Group$$c2018
000131802 3367_ $$2DRIVER$$aarticle
000131802 3367_ $$2DataCite$$aOutput Types/Journal article
000131802 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1660118696_9237
000131802 3367_ $$2BibTeX$$aARTICLE
000131802 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000131802 3367_ $$00$$2EndNote$$aJournal Article
000131802 520__ $$aMultimodal imaging combines complementary platforms for spatially resolved tissue analysis that are poised for application in life science and personalized medicine. Unlike established clinical in vivo multimodality imaging, automated workflows for in-depth multimodal molecular ex vivo tissue analysis that combine the speed and ease of spectroscopic imaging with molecular details provided by mass spectrometry imaging (MSI) are lagging behind. Here, we present an integrated approach that utilizes non-destructive Fourier transform infrared (FTIR) microscopy and matrix assisted laser desorption/ionization (MALDI) MSI for analysing single-slide tissue specimen. We show that FTIR microscopy can automatically guide high-resolution MSI data acquisition and interpretation without requiring prior histopathological tissue annotation, thus circumventing potential human-annotation-bias while achieving >90% reductions of data load and acquisition time. We apply FTIR imaging as an upstream modality to improve accuracy of tissue-morphology detection and to retrieve diagnostic molecular signatures in an automated, unbiased and spatially aware manner. We show the general applicability of multimodal FTIR-guided MALDI-MSI by demonstrating precise tumor localization in mouse brain bearing glioma xenografts and in human primary gastrointestinal stromal tumors. Finally, the presented multimodal tissue analysis method allows for morphology-sensitive lipid signature retrieval from brains of mice suffering from lipidosis caused by Niemann-Pick type C disease.
000131802 536__ $$0G:(DE-HGF)POF3-317$$a317 - Translational cancer research (POF3-317)$$cPOF3-317$$fPOF III$$x0
000131802 588__ $$aDataset connected to CrossRef, PubMed,
000131802 7001_ $$aA Sammour, Denis$$b1
000131802 7001_ $$aSchulz, Sandra$$b2
000131802 7001_ $$aMunteanu, Bogdan$$b3
000131802 7001_ $$0P:(DE-He78)8ad8a02ad786e6e86cbc5ccdbb661da7$$aOtt, Martina$$b4$$udkfz
000131802 7001_ $$0P:(DE-He78)0f9fbf5fd70dad2bba0760cee65c9613$$aOchs, Katharina$$b5$$udkfz
000131802 7001_ $$aHohenberger, Peter$$b6
000131802 7001_ $$aMarx, Alexander$$b7
000131802 7001_ $$0P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5$$aPlatten, Michael$$b8$$udkfz
000131802 7001_ $$aOpitz, Christiane A$$b9
000131802 7001_ $$aOry, Daniel S$$b10
000131802 7001_ $$aHopf, Carsten$$b11
000131802 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-017-18477-6$$gVol. 8, no. 1, p. 313$$n1$$p313$$tScientific reports$$v8$$x2045-2322$$y2018
000131802 909CO $$ooai:inrepo02.dkfz.de:131802$$pVDB
000131802 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8ad8a02ad786e6e86cbc5ccdbb661da7$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000131802 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0f9fbf5fd70dad2bba0760cee65c9613$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000131802 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000131802 9131_ $$0G:(DE-HGF)POF3-317$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTranslational cancer research$$x0
000131802 9141_ $$y2018
000131802 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015
000131802 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000131802 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000131802 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000131802 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000131802 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000131802 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000131802 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000131802 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000131802 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000131802 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000131802 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000131802 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000131802 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000131802 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015
000131802 9201_ $$0I:(DE-He78)G160-20160331$$kG160$$lNeuroimmunologie und Hirntumorimmunologie$$x0
000131802 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x1
000131802 9201_ $$0I:(DE-He78)G161-20160331$$kG161$$lBrain Cancer Metabolism$$x2
000131802 980__ $$ajournal
000131802 980__ $$aVDB
000131802 980__ $$aI:(DE-He78)G160-20160331
000131802 980__ $$aI:(DE-He78)L101-20160331
000131802 980__ $$aI:(DE-He78)G161-20160331
000131802 980__ $$aUNRESTRICTED