TY - JOUR
AU - Lehmann, Lorenz H
AU - Jebessa, Zegeye H
AU - Kreusser, Michael M
AU - Horsch, Axel
AU - He, Tao
AU - Kronlage, Mariya
AU - Dewenter, Matthias
AU - Sramek, Viviana
AU - Oehl, Ulrike
AU - Krebs-Haupenthal, Jutta
AU - von der Lieth, Albert H
AU - Schmidt, Andrea
AU - Sun, Qiang
AU - Ritterhoff, Julia
AU - Finke, Daniel
AU - Völkers, Mirko
AU - Jungmann, Andreas
AU - Sauer, Sven W
AU - Thiel, Christian
AU - Nickel, Alexander
AU - Kohlhaas, Michael
AU - Schäfer, Michaela
AU - Sticht, Carsten
AU - Maack, Christoph
AU - Gretz, Norbert
AU - Wagner, Michael
AU - El-Armouche, Ali
AU - Maier, Lars S
AU - Londoño, Juan E Camacho
AU - Meder, Benjamin
AU - Freichel, Marc
AU - Gröne, Hermann-Josef
AU - Most, Patrick
AU - Müller, Oliver J
AU - Herzig, Stephan
AU - Furlong, Eileen E M
AU - Katus, Hugo A
AU - Backs, Johannes
TI - A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway.
JO - Nature medicine
VL - 24
IS - 1
SN - 1546-170X
CY - New York, NY
PB - Nature America Inc.
M1 - DKFZ-2018-00131
SP - 62 - 72
PY - 2018
AB - The stress-responsive epigenetic repressor histone deacetylase 4 (HDAC4) regulates cardiac gene expression. Here we show that the levels of an N-terminal proteolytically derived fragment of HDAC4, termed HDAC4-NT, are lower in failing mouse hearts than in healthy control hearts. Virus-mediated transfer of the portion of the Hdac4 gene encoding HDAC4-NT into the mouse myocardium protected the heart from remodeling and failure; this was associated with decreased expression of Nr4a1, which encodes a nuclear orphan receptor, and decreased NR4A1-dependent activation of the hexosamine biosynthetic pathway (HBP). Conversely, exercise enhanced HDAC4-NT levels, and mice with a cardiomyocyte-specific deletion of Hdac4 show reduced exercise capacity, which was characterized by cardiac fatigue and increased expression of Nr4a1. Mechanistically, we found that NR4A1 negatively regulated contractile function in a manner that depended on the HBP and the calcium sensor STIM1. Our work describes a new regulatory axis in which epigenetic regulation of a metabolic pathway affects calcium handling. Activation of this axis during intermittent physiological stress promotes cardiac function, whereas its impairment in sustained pathological cardiac stress leads to heart failure.
LB - PUB:(DE-HGF)16
C6 - pmid:29227474
DO - DOI:10.1038/nm.4452
UR - https://inrepo02.dkfz.de/record/132443
ER -