001     132469
005     20240229111722.0
024 7 _ |a 10.1007/s10654-017-0333-0
|2 doi
024 7 _ |a pmid:29181692
|2 pmid
024 7 _ |a pmc:PMC5803284
|2 pmc
024 7 _ |a 0393-2990
|2 ISSN
024 7 _ |a 1573-7284
|2 ISSN
024 7 _ |a altmetric:29501063
|2 altmetric
037 _ _ |a DKFZ-2018-00157
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Floegel, Anna
|b 0
245 _ _ |a Serum metabolites and risk of myocardial infarction and ischemic stroke: a targeted metabolomic approach in two German prospective cohorts.
260 _ _ |a Dordrecht [u.a.]
|c 2018
|b Springer Science + Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1680679465_11716
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Metabolomic approaches in prospective cohorts may offer a unique snapshot into early metabolic perturbations that are associated with a higher risk of cardiovascular diseases (CVD) in healthy people. We investigated the association of 105 serum metabolites, including acylcarnitines, amino acids, phospholipids and hexose, with risk of myocardial infarction (MI) and ischemic stroke in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) and Heidelberg (25,540 adults) cohorts. Using case-cohort designs, we measured metabolites among individuals who were free of CVD and diabetes at blood draw but developed MI (n = 204 and n = 228) or stroke (n = 147 and n = 121) during follow-up (mean, 7.8 and 7.3 years) and among randomly drawn subcohorts (n = 2214 and n = 770). We used Cox regression analysis and combined results using meta-analysis. Independent of classical CVD risk factors, ten metabolites were associated with risk of MI in both cohorts, including sphingomyelins, diacyl-phosphatidylcholines and acyl-alkyl-phosphatidylcholines with pooled relative risks in the range of 1.21-1.40 per one standard deviation increase in metabolite concentrations. The metabolites showed positive correlations with total- and LDL-cholesterol (r ranged from 0.13 to 0.57). When additionally adjusting for total-, LDL- and HDL-cholesterol, triglycerides and C-reactive protein, acyl-alkyl-phosphatidylcholine C36:3 and diacyl-phosphatidylcholines C38:3 and C40:4 remained associated with risk of MI. When added to classical CVD risk models these metabolites further improved CVD prediction (c-statistics increased from 0.8365 to 0.8384 in EPIC-Potsdam and from 0.8344 to 0.8378 in EPIC-Heidelberg). None of the metabolites was consistently associated with stroke risk. Alterations in sphingomyelin and phosphatidylcholine metabolism, and particularly metabolites of the arachidonic acid pathway are independently associated with risk of MI in healthy adults.
536 _ _ |a 323 - Metabolic Dysfunction as Risk Factor (POF3-323)
|0 G:(DE-HGF)POF3-323
|c POF3-323
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Kühn, Tilman
|0 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe
|b 1
700 1 _ |a Sookthai, Disorn
|0 P:(DE-He78)fd4ffe2a3f08e0158b82400acd6716be
|b 2
700 1 _ |a Johnson, Theron Scot
|0 P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa
|b 3
700 1 _ |a Prehn, Cornelia
|b 4
700 1 _ |a Rolle-Kampczyk, Ulrike
|b 5
700 1 _ |a Otto, Wolfgang
|b 6
700 1 _ |a Weikert, Cornelia
|b 7
700 1 _ |a Illig, Thomas
|b 8
700 1 _ |a von Bergen, Martin
|b 9
700 1 _ |a Adamski, Jerzy
|b 10
700 1 _ |a Boeing, Heiner
|b 11
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 12
|e Last author
700 1 _ |a Pischon, Tobias
|b 13
773 _ _ |a 10.1007/s10654-017-0333-0
|g Vol. 33, no. 1, p. 55 - 66
|0 PERI:(DE-600)2004992-4
|n 1
|p 55 - 66
|t European journal of epidemiology
|v 33
|y 2018
|x 1573-7284
909 C O |p VDB
|o oai:inrepo02.dkfz.de:132469
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)fd4ffe2a3f08e0158b82400acd6716be
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
913 1 _ |a DE-HGF
|b Gesundheit
|l Herz-Kreislauf-Stoffwechselerkrankungen
|1 G:(DE-HGF)POF3-320
|0 G:(DE-HGF)POF3-323
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Metabolic Dysfunction as Risk Factor
|x 0
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J EPIDEMIOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR J EPIDEMIOL : 2015
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21