000132471 001__ 132471 000132471 005__ 20240229105018.0 000132471 0247_ $$2doi$$a10.1002/mrm.26919 000132471 0247_ $$2pmid$$apmid:28940621 000132471 0247_ $$2ISSN$$a0740-3194 000132471 0247_ $$2ISSN$$a1522-2594 000132471 0247_ $$2altmetric$$aaltmetric:26537047 000132471 037__ $$aDKFZ-2018-00159 000132471 041__ $$aeng 000132471 082__ $$a610 000132471 1001_ $$0P:(DE-He78)e53269841d4ebee93831196e267ee81b$$aFunck, Carsten$$b0$$eFirst author$$udkfz 000132471 245__ $$aCharacterization of the diffusion coefficient of blood. 000132471 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2018 000132471 3367_ $$2DRIVER$$aarticle 000132471 3367_ $$2DataCite$$aOutput Types/Journal article 000132471 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521445730_12159 000132471 3367_ $$2BibTeX$$aARTICLE 000132471 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000132471 3367_ $$00$$2EndNote$$aJournal Article 000132471 520__ $$aTo characterize the diffusion coefficient of human blood for accurate results in intravoxel incoherent motion imaging.Diffusion-weighted MRI of blood samples from 10 healthy volunteers was acquired with a single-shot echo-planar-imaging sequence at body temperature. Effects of gradient profile (monopolar or flow-compensated), diffusion time (40-100 ms), and echo time (60-200 ms) were investigated.Although measured apparent diffusion coefficients of blood were larger for flow-compensated than for monopolar gradients, no dependence of the apparent diffusion coefficient on the diffusion time was found. Large differences between individual samples were observed, with results ranging from 1.26 to 1.66 µm2/ms for flow-compensated and 0.94 to 1.52 µm2/ms for monopolar gradients. Statistical analysis indicates correlations of the flow-compensated apparent diffusion coefficient with hematocrit (P = 0.007) and hemoglobin (P = 0.017), but not with mean corpuscular volume (P = 0.64). Results of Monte-Carlo simulations support the experimental observations.Measured blood apparent diffusion coefficient values depend on hematocrit/hemoglobin concentration and applied gradient profile due to non-Gaussian diffusion. Because in vivo measurement is delicate, an estimation based on blood count results could be an alternative. For intravoxel incoherent motion modeling, the use of a blood self-diffusion constant Db = 1.54 ± 0.12 µm2/ms for flow-compensated and Db = 1.30 ± 0.18 µm2/ms for monopolar encoding is suggested. Magn Reson Med 79:2752-2758, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 000132471 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0 000132471 588__ $$aDataset connected to CrossRef, PubMed, 000132471 7001_ $$0P:(DE-HGF)0$$aLaun, Frederik Bernd$$b1 000132471 7001_ $$0P:(DE-HGF)0$$aWetscherek, Andreas$$b2$$eLast author 000132471 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.26919$$gVol. 79, no. 5, p. 2752 - 2758$$n5$$p2752 - 2758$$tMagnetic resonance in medicine$$v79$$x0740-3194$$y2018 000132471 909CO $$ooai:inrepo02.dkfz.de:132471$$pVDB 000132471 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e53269841d4ebee93831196e267ee81b$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000132471 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000132471 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ 000132471 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0 000132471 9141_ $$y2018 000132471 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000132471 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2015 000132471 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000132471 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000132471 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000132471 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000132471 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000132471 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000132471 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine 000132471 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000132471 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000132471 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000132471 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x0 000132471 9201_ $$0I:(DE-He78)E025-20160331$$kE025$$lRöntgenbildgebung und Computertomographie$$x1 000132471 980__ $$ajournal 000132471 980__ $$aVDB 000132471 980__ $$aI:(DE-He78)E020-20160331 000132471 980__ $$aI:(DE-He78)E025-20160331 000132471 980__ $$aUNRESTRICTED