TY - JOUR
AU - Liu, Gang
AU - Mukherjee, Bhramar
AU - Lee, Seunggeun
AU - Lee, Alice W
AU - Wu, Anna H
AU - Bandera, Elisa V
AU - Jensen, Allan
AU - Rossing, Mary Anne
AU - Moysich, Kirsten B
AU - Chang-Claude, Jenny
AU - Doherty, Jennifer A
AU - Gentry-Maharaj, Aleksandra
AU - Kiemeney, Lambertus
AU - Gayther, Simon A
AU - Modugno, Francesmary
AU - Massuger, Leon
AU - Goode, Ellen L
AU - Fridley, Brooke L
AU - Terry, Kathryn L
AU - Cramer, Daniel W
AU - Ramus, Susan J
AU - Anton-Culver, Hoda
AU - Ziogas, Argyrios
AU - Tyrer, Jonathan P
AU - Schildkraut, Joellen M
AU - Kjaer, Susanne K
AU - Webb, Penelope M
AU - Ness, Roberta B
AU - Menon, Usha
AU - Berchuck, Andrew
AU - Pharoah, Paul D
AU - Risch, Harvey
AU - Pearce, Celeste Leigh
TI - Robust Tests for Additive Gene-Environment Interaction in Case-Control Studies Using Gene-Environment Independence.
JO - American journal of epidemiology
VL - 187
IS - 2
SN - 1476-6256
CY - Oxford
PB - Oxford Univ. Press
M1 - DKFZ-2018-00182
SP - 366 - 377
PY - 2018
AB - There have been recent proposals advocating the use of additive gene-environment interaction instead of the widely used multiplicative scale, as a more relevant public health measure. Using gene-environment independence enhances statistical power for testing multiplicative interaction in case-control studies. However, under departure from this assumption, substantial bias in the estimates and inflated type I error in the corresponding tests can occur. In this paper, we extend the empirical Bayes (EB) approach previously developed for multiplicative interaction, which trades off between bias and efficiency in a data-adaptive way, to the additive scale. An EB estimator of the relative excess risk due to interaction is derived, and the corresponding Wald test is proposed with a general regression setting under a retrospective likelihood framework. We study the impact of gene-environment association on the resultant test with case-control data. Our simulation studies suggest that the EB approach uses the gene-environment independence assumption in a data-adaptive way and provides a gain in power compared with the standard logistic regression analysis and better control of type I error when compared with the analysis assuming gene-environment independence. We illustrate the methods with data from the Ovarian Cancer Association Consortium.
LB - PUB:(DE-HGF)16
C6 - pmid:28633381
DO - DOI:10.1093/aje/kwx243
UR - https://inrepo02.dkfz.de/record/132495
ER -