001     132495
005     20240229105019.0
024 7 _ |a 10.1093/aje/kwx243
|2 doi
024 7 _ |a pmid:28633381
|2 pmid
024 7 _ |a 0002-9262
|2 ISSN
024 7 _ |a 1476-6256
|2 ISSN
024 7 _ |a altmetric:22219436
|2 altmetric
037 _ _ |a DKFZ-2018-00182
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Liu, Gang
|b 0
245 _ _ |a Robust Tests for Additive Gene-Environment Interaction in Case-Control Studies Using Gene-Environment Independence.
260 _ _ |a Oxford
|c 2018
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521206779_1744
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a There have been recent proposals advocating the use of additive gene-environment interaction instead of the widely used multiplicative scale, as a more relevant public health measure. Using gene-environment independence enhances statistical power for testing multiplicative interaction in case-control studies. However, under departure from this assumption, substantial bias in the estimates and inflated type I error in the corresponding tests can occur. In this paper, we extend the empirical Bayes (EB) approach previously developed for multiplicative interaction, which trades off between bias and efficiency in a data-adaptive way, to the additive scale. An EB estimator of the relative excess risk due to interaction is derived, and the corresponding Wald test is proposed with a general regression setting under a retrospective likelihood framework. We study the impact of gene-environment association on the resultant test with case-control data. Our simulation studies suggest that the EB approach uses the gene-environment independence assumption in a data-adaptive way and provides a gain in power compared with the standard logistic regression analysis and better control of type I error when compared with the analysis assuming gene-environment independence. We illustrate the methods with data from the Ovarian Cancer Association Consortium.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Mukherjee, Bhramar
|b 1
700 1 _ |a Lee, Seunggeun
|b 2
700 1 _ |a Lee, Alice W
|b 3
700 1 _ |a Wu, Anna H
|b 4
700 1 _ |a Bandera, Elisa V
|b 5
700 1 _ |a Jensen, Allan
|b 6
700 1 _ |a Rossing, Mary Anne
|b 7
700 1 _ |a Moysich, Kirsten B
|b 8
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 9
|u dkfz
700 1 _ |a Doherty, Jennifer A
|b 10
700 1 _ |a Gentry-Maharaj, Aleksandra
|b 11
700 1 _ |a Kiemeney, Lambertus
|b 12
700 1 _ |a Gayther, Simon A
|b 13
700 1 _ |a Modugno, Francesmary
|b 14
700 1 _ |a Massuger, Leon
|b 15
700 1 _ |a Goode, Ellen L
|b 16
700 1 _ |a Fridley, Brooke L
|b 17
700 1 _ |a Terry, Kathryn L
|b 18
700 1 _ |a Cramer, Daniel W
|b 19
700 1 _ |a Ramus, Susan J
|b 20
700 1 _ |a Anton-Culver, Hoda
|b 21
700 1 _ |a Ziogas, Argyrios
|b 22
700 1 _ |a Tyrer, Jonathan P
|b 23
700 1 _ |a Schildkraut, Joellen M
|b 24
700 1 _ |a Kjaer, Susanne K
|b 25
700 1 _ |a Webb, Penelope M
|b 26
700 1 _ |a Ness, Roberta B
|b 27
700 1 _ |a Menon, Usha
|b 28
700 1 _ |a Berchuck, Andrew
|b 29
700 1 _ |a Pharoah, Paul D
|b 30
700 1 _ |a Risch, Harvey
|b 31
700 1 _ |a Pearce, Celeste Leigh
|b 32
700 1 _ |a Consortium, Ovarian Cancer Association
|b 33
|e Collaboration Author
773 _ _ |a 10.1093/aje/kwx243
|g Vol. 187, no. 2, p. 366 - 377
|0 PERI:(DE-600)2030043-8
|n 2
|p 366 - 377
|t American journal of epidemiology
|v 187
|y 2018
|x 1476-6256
909 C O |o oai:inrepo02.dkfz.de:132495
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AM J EPIDEMIOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b AM J EPIDEMIOL : 2015
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebserkrankungen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21