000132617 001__ 132617
000132617 005__ 20240228140958.0
000132617 0247_ $$2doi$$a10.1007/s11548-014-1090-0
000132617 0247_ $$2pmid$$apmid:24989967
000132617 0247_ $$2ISSN$$a1861-6410
000132617 0247_ $$2ISSN$$a1861-6429
000132617 037__ $$aDKFZ-2018-00277
000132617 041__ $$aeng
000132617 082__ $$a610
000132617 1001_ $$aKohlmann, Peter$$b0
000132617 245__ $$aAutomatic lung segmentation method for MRI-based lung perfusion studies of patients with chronic obstructive pulmonary disease.
000132617 260__ $$aBerlin$$bSpringer$$c2015
000132617 3367_ $$2DRIVER$$aarticle
000132617 3367_ $$2DataCite$$aOutput Types/Journal article
000132617 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522245776_30777
000132617 3367_ $$2BibTeX$$aARTICLE
000132617 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000132617 3367_ $$00$$2EndNote$$aJournal Article
000132617 520__ $$aA novel fully automatic lung segmentation method for magnetic resonance (MR) images of patients with chronic obstructive pulmonary disease (COPD) is presented. The main goal of this work was to ease the tedious and time-consuming task of manual lung segmentation, which is required for region-based volumetric analysis of four-dimensional MR perfusion studies which goes beyond the analysis of small regions of interest.The first step in the automatic algorithm is the segmentation of the lungs in morphological MR images with higher spatial resolution than corresponding perfusion MR images. Subsequently, the segmentation mask of the lungs is transferred to the perfusion images via nonlinear registration. Finally, the masks for left and right lungs are subdivided into a user-defined number of partitions. Fourteen patients with two time points resulting in 28 perfusion data sets were available for the preliminary evaluation of the developed methods.Resulting lung segmentation masks are compared with reference segmentations from experienced chest radiologists, as well as with total lung capacity (TLC) acquired by full-body plethysmography. TLC results were available for thirteen patients. The relevance of the presented method is indicated by an evaluation, which shows high correlation between automatically generated lung masks with corresponding ground-truth estimates.The evaluation of the developed methods indicates good accuracy and shows that automatically generated lung masks differ from expert segmentations about as much as segmentations from different experts.
000132617 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000132617 588__ $$aDataset connected to CrossRef, PubMed,
000132617 7001_ $$aStrehlow, Jan$$b1
000132617 7001_ $$0P:(DE-HGF)0$$aJobst, Betram$$b2
000132617 7001_ $$aKrass, Stefan$$b3
000132617 7001_ $$aKuhnigk, Jan-Martin$$b4
000132617 7001_ $$aAnjorin, Angela$$b5
000132617 7001_ $$0P:(DE-He78)82090937e7b88ac8ec70bbc40ad6b512$$aSedlaczek, Oliver$$b6$$udkfz
000132617 7001_ $$aLey, Sebastian$$b7
000132617 7001_ $$0P:(DE-He78)cdb6ba5e925fa050ebfa816181cf5769$$aKauczor, Hans-Ulrich$$b8$$udkfz
000132617 7001_ $$0P:(DE-He78)40da88c1e07a6ce8bf1d138b6215471f$$aWielpütz, Mark Oliver$$b9$$eLast author$$udkfz
000132617 773__ $$0PERI:(DE-600)2235881-X$$a10.1007/s11548-014-1090-0$$gVol. 10, no. 4, p. 403 - 417$$n4$$p403 - 417$$tInternational journal of computer assisted radiology and surgery$$v10$$x1861-6429$$y2015
000132617 909CO $$ooai:inrepo02.dkfz.de:132617$$pVDB
000132617 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000132617 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)82090937e7b88ac8ec70bbc40ad6b512$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000132617 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)cdb6ba5e925fa050ebfa816181cf5769$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000132617 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)40da88c1e07a6ce8bf1d138b6215471f$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000132617 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000132617 9141_ $$y2015
000132617 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000132617 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000132617 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J COMPUT ASS RAD : 2015
000132617 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000132617 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000132617 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000132617 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000132617 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000132617 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lRadiologie$$x0
000132617 9201_ $$0I:(DE-He78)E015-20160331$$kE015$$lPopulation Imaging$$x1
000132617 980__ $$ajournal
000132617 980__ $$aVDB
000132617 980__ $$aI:(DE-He78)E010-20160331
000132617 980__ $$aI:(DE-He78)E015-20160331
000132617 980__ $$aUNRESTRICTED