001     132617
005     20240228140958.0
024 7 _ |a 10.1007/s11548-014-1090-0
|2 doi
024 7 _ |a pmid:24989967
|2 pmid
024 7 _ |a 1861-6410
|2 ISSN
024 7 _ |a 1861-6429
|2 ISSN
037 _ _ |a DKFZ-2018-00277
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Kohlmann, Peter
|b 0
245 _ _ |a Automatic lung segmentation method for MRI-based lung perfusion studies of patients with chronic obstructive pulmonary disease.
260 _ _ |a Berlin
|c 2015
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522245776_30777
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A novel fully automatic lung segmentation method for magnetic resonance (MR) images of patients with chronic obstructive pulmonary disease (COPD) is presented. The main goal of this work was to ease the tedious and time-consuming task of manual lung segmentation, which is required for region-based volumetric analysis of four-dimensional MR perfusion studies which goes beyond the analysis of small regions of interest.The first step in the automatic algorithm is the segmentation of the lungs in morphological MR images with higher spatial resolution than corresponding perfusion MR images. Subsequently, the segmentation mask of the lungs is transferred to the perfusion images via nonlinear registration. Finally, the masks for left and right lungs are subdivided into a user-defined number of partitions. Fourteen patients with two time points resulting in 28 perfusion data sets were available for the preliminary evaluation of the developed methods.Resulting lung segmentation masks are compared with reference segmentations from experienced chest radiologists, as well as with total lung capacity (TLC) acquired by full-body plethysmography. TLC results were available for thirteen patients. The relevance of the presented method is indicated by an evaluation, which shows high correlation between automatically generated lung masks with corresponding ground-truth estimates.The evaluation of the developed methods indicates good accuracy and shows that automatically generated lung masks differ from expert segmentations about as much as segmentations from different experts.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Strehlow, Jan
|b 1
700 1 _ |a Jobst, Betram
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Krass, Stefan
|b 3
700 1 _ |a Kuhnigk, Jan-Martin
|b 4
700 1 _ |a Anjorin, Angela
|b 5
700 1 _ |a Sedlaczek, Oliver
|0 P:(DE-He78)82090937e7b88ac8ec70bbc40ad6b512
|b 6
|u dkfz
700 1 _ |a Ley, Sebastian
|b 7
700 1 _ |a Kauczor, Hans-Ulrich
|0 P:(DE-He78)cdb6ba5e925fa050ebfa816181cf5769
|b 8
|u dkfz
700 1 _ |a Wielpütz, Mark Oliver
|0 P:(DE-He78)40da88c1e07a6ce8bf1d138b6215471f
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.1007/s11548-014-1090-0
|g Vol. 10, no. 4, p. 403 - 417
|0 PERI:(DE-600)2235881-X
|n 4
|p 403 - 417
|t International journal of computer assisted radiology and surgery
|v 10
|y 2015
|x 1861-6429
909 C O |o oai:inrepo02.dkfz.de:132617
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)82090937e7b88ac8ec70bbc40ad6b512
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)cdb6ba5e925fa050ebfa816181cf5769
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)40da88c1e07a6ce8bf1d138b6215471f
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J COMPUT ASS RAD : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E015-20160331
|k E015
|l Population Imaging
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)E015-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21