000132643 001__ 132643
000132643 005__ 20240229105025.0
000132643 0247_ $$2doi$$a10.1002/bimj.201600226
000132643 0247_ $$2pmid$$apmid:28762532
000132643 0247_ $$2ISSN$$a0006-3452
000132643 0247_ $$2ISSN$$a0323-3847
000132643 0247_ $$2ISSN$$a1521-4036
000132643 0247_ $$2altmetric$$aaltmetric:24920211
000132643 037__ $$aDKFZ-2018-00303
000132643 041__ $$aeng
000132643 082__ $$a570
000132643 1001_ $$0P:(DE-HGF)0$$aHabermehl, Christina$$b0$$eFirst author
000132643 245__ $$aAddressing small sample size bias in multiple-biomarker trials: Inclusion of biomarker-negative patients and Firth correction.
000132643 260__ $$aBerlin$$bWiley-VCH$$c2018
000132643 3367_ $$2DRIVER$$aarticle
000132643 3367_ $$2DataCite$$aOutput Types/Journal article
000132643 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1525332008_1077
000132643 3367_ $$2BibTeX$$aARTICLE
000132643 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000132643 3367_ $$00$$2EndNote$$aJournal Article
000132643 520__ $$aIn recent years, numerous approaches for biomarker-based clinical trials have been developed. One of these developments are multiple-biomarker trials, which aim to investigate multiple biomarkers simultaneously in independent subtrials. For low-prevalence biomarkers, small sample sizes within the subtrials have to be expected, as well as many biomarker-negative patients at the screening stage. The small sample sizes may make it unfeasible to analyze the subtrials individually. This imposes the need to develop new approaches for the analysis of such trials. With an expected large group of biomarker-negative patients, it seems reasonable to explore options to benefit from including them in such trials. We consider advantages and disadvantages of the inclusion of biomarker-negative patients in a multiple-biomarker trial with a survival endpoint. We discuss design options that include biomarker-negative patients in the study and address the issue of small sample size bias in such trials. We carry out a simulation study for a design where biomarker-negative patients are kept in the study and are treated with standard of care. We compare three different analysis approaches based on the Cox model to examine if the inclusion of biomarker-negative patients can provide a benefit with respect to bias and variance of the treatment effect estimates. We apply the Firth correction to reduce the small sample size bias. The results of the simulation study suggest that for small sample situations, the Firth correction should be applied to adjust for the small sample size bias. Additional to the Firth penalty, the inclusion of biomarker-negative patients in the analysis can lead to further but small improvements in bias and standard deviation of the estimates.
000132643 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000132643 588__ $$aDataset connected to CrossRef, PubMed,
000132643 7001_ $$0P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aBenner, Axel$$b1$$udkfz
000132643 7001_ $$00000-0002-1810-0267$$aKopp-Schneider, Annette$$b2$$eLast author
000132643 773__ $$0PERI:(DE-600)1479920-0$$a10.1002/bimj.201600226$$gVol. 60, no. 2, p. 275 - 287$$n2$$p275 - 287$$tBiometrical journal$$v60$$x0323-3847$$y2018
000132643 909CO $$ooai:inrepo02.dkfz.de:132643$$pVDB
000132643 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000132643 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000132643 9101_ $$0I:(DE-588b)2036810-0$$60000-0002-1810-0267$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000132643 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000132643 9141_ $$y2018
000132643 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000132643 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMETRICAL J : 2015
000132643 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000132643 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000132643 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000132643 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000132643 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000132643 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000132643 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000132643 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x0
000132643 980__ $$ajournal
000132643 980__ $$aVDB
000132643 980__ $$aI:(DE-He78)C060-20160331
000132643 980__ $$aUNRESTRICTED