000132674 001__ 132674
000132674 005__ 20240229105026.0
000132674 0247_ $$2doi$$a10.1002/bimj.201600267
000132674 0247_ $$2pmid$$apmid:29280179
000132674 0247_ $$2ISSN$$a0006-3452
000132674 0247_ $$2ISSN$$a0323-3847
000132674 0247_ $$2ISSN$$a1521-4036
000132674 0247_ $$2altmetric$$aaltmetric:34028384
000132674 037__ $$aDKFZ-2018-00334
000132674 041__ $$aeng
000132674 082__ $$a570
000132674 1001_ $$aStoyan, Dietrich$$b0
000132674 245__ $$aMultiple-rater kappas for binary data: Models and interpretation.
000132674 260__ $$aBerlin$$bWiley-VCH$$c2018
000132674 3367_ $$2DRIVER$$aarticle
000132674 3367_ $$2DataCite$$aOutput Types/Journal article
000132674 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1525334164_1077
000132674 3367_ $$2BibTeX$$aARTICLE
000132674 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000132674 3367_ $$00$$2EndNote$$aJournal Article
000132674 520__ $$aInterrater agreement on binary measurements with more than two raters is often assessed using Fleiss' κ, which is known to be difficult to interpret. In situations where the same raters rate all items, however, the far less known κ suggested by Conger, Hubert, and Schouten is more appropriate. We try to support the interpretation of these characteristics by investigating various models or scenarios of rating. Our analysis, which is restricted to binary data, shows that conclusions concerning interrater agreement by κ heavily depend on the population of items or subjects considered, even if the raters have identical behavior. The standard scale proposed by Landis and Koch, which verbally interprets numerical values of κ, appears to be rather subjective. On the basis of one of the models for rater behavior, we suggest an alternative verbal interpretation for kappa. Finally, we reconsider a classical example from pathology to illustrate the application of our methods and models. We also look for subgroups of raters with similar rating behavior using hierarchical clustering.
000132674 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000132674 588__ $$aDataset connected to CrossRef, PubMed,
000132674 7001_ $$aPommerening, Arne$$b1
000132674 7001_ $$0P:(DE-He78)fae4f3c76bbbd2fc21dd920b46945d42$$aHummel, Manuela$$b2$$udkfz
000132674 7001_ $$00000-0002-1810-0267$$aKopp-Schneider, Annette$$b3$$eLast author
000132674 773__ $$0PERI:(DE-600)1479920-0$$a10.1002/bimj.201600267$$gVol. 60, no. 2, p. 381 - 394$$n2$$p381 - 394$$tBiometrical journal$$v60$$x0323-3847$$y2018
000132674 909CO $$ooai:inrepo02.dkfz.de:132674$$pVDB
000132674 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fae4f3c76bbbd2fc21dd920b46945d42$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000132674 9101_ $$0I:(DE-588b)2036810-0$$60000-0002-1810-0267$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000132674 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000132674 9141_ $$y2018
000132674 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000132674 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMETRICAL J : 2015
000132674 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000132674 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000132674 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000132674 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000132674 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000132674 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000132674 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000132674 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x0
000132674 980__ $$ajournal
000132674 980__ $$aVDB
000132674 980__ $$aI:(DE-He78)C060-20160331
000132674 980__ $$aUNRESTRICTED