001     132674
005     20240229105026.0
024 7 _ |a 10.1002/bimj.201600267
|2 doi
024 7 _ |a pmid:29280179
|2 pmid
024 7 _ |a 0006-3452
|2 ISSN
024 7 _ |a 0323-3847
|2 ISSN
024 7 _ |a 1521-4036
|2 ISSN
024 7 _ |a altmetric:34028384
|2 altmetric
037 _ _ |a DKFZ-2018-00334
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Stoyan, Dietrich
|b 0
245 _ _ |a Multiple-rater kappas for binary data: Models and interpretation.
260 _ _ |a Berlin
|c 2018
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1525334164_1077
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Interrater agreement on binary measurements with more than two raters is often assessed using Fleiss' κ, which is known to be difficult to interpret. In situations where the same raters rate all items, however, the far less known κ suggested by Conger, Hubert, and Schouten is more appropriate. We try to support the interpretation of these characteristics by investigating various models or scenarios of rating. Our analysis, which is restricted to binary data, shows that conclusions concerning interrater agreement by κ heavily depend on the population of items or subjects considered, even if the raters have identical behavior. The standard scale proposed by Landis and Koch, which verbally interprets numerical values of κ, appears to be rather subjective. On the basis of one of the models for rater behavior, we suggest an alternative verbal interpretation for kappa. Finally, we reconsider a classical example from pathology to illustrate the application of our methods and models. We also look for subgroups of raters with similar rating behavior using hierarchical clustering.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Pommerening, Arne
|b 1
700 1 _ |a Hummel, Manuela
|0 P:(DE-He78)fae4f3c76bbbd2fc21dd920b46945d42
|b 2
|u dkfz
700 1 _ |a Kopp-Schneider, Annette
|0 0000-0002-1810-0267
|b 3
|e Last author
773 _ _ |a 10.1002/bimj.201600267
|g Vol. 60, no. 2, p. 381 - 394
|0 PERI:(DE-600)1479920-0
|n 2
|p 381 - 394
|t Biometrical journal
|v 60
|y 2018
|x 0323-3847
909 C O |o oai:inrepo02.dkfz.de:132674
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)fae4f3c76bbbd2fc21dd920b46945d42
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 0000-0002-1810-0267
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOMETRICAL J : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21