000132711 001__ 132711
000132711 005__ 20240229105028.0
000132711 0247_ $$2doi$$a10.1016/j.neuroimage.2017.03.035
000132711 0247_ $$2pmid$$apmid:28336426
000132711 0247_ $$2ISSN$$a1053-8119
000132711 0247_ $$2ISSN$$a1095-9572
000132711 0247_ $$2altmetric$$aaltmetric:18008792
000132711 037__ $$aDKFZ-2018-00365
000132711 041__ $$aeng
000132711 082__ $$a610
000132711 1001_ $$0P:(DE-He78)bcbe9862276365dd99a98b48449fd046$$aFiedler, Thomas$$b0$$eFirst author$$udkfz
000132711 245__ $$aSAR Simulations & Safety.
000132711 260__ $$aOrlando, Fla.$$bAcademic Press$$c2018
000132711 3367_ $$2DRIVER$$aarticle
000132711 3367_ $$2DataCite$$aOutput Types/Journal article
000132711 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661343118_31348$$xReview Article
000132711 3367_ $$2BibTeX$$aARTICLE
000132711 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000132711 3367_ $$00$$2EndNote$$aJournal Article
000132711 520__ $$aAt ultra-high fields, the assessment of radiofrequency (RF) safety presents several new challenges compared to low-field systems. Multi-channel RF transmit coils in combination with parallel transmit techniques produce time-dependent and spatially varying power loss densities in the tissue. Further, in ultra-high-field systems, localized field effects can be more pronounced due to a transition from the quasi stationary to the electromagnetic field regime. Consequently, local information on the RF field is required for reliable RF safety assessment as well as for monitoring of RF exposure during MR examinations. Numerical RF and thermal simulations for realistic exposure scenarios with anatomical body models are currently the only practical way to obtain the requisite local information on magnetic and electric field distributions as well as tissue temperature. In this article, safety regulations and the fundamental characteristics of RF field distributions in ultra-high-field systems are reviewed. Numerical methods for computation of RF fields as well as typical requirements for the analysis of realistic multi-channel RF exposure scenarios including anatomical body models are highlighted. In recent years, computation of the local tissue temperature has become of increasing interest, since a more accurate safety assessment is expected because temperature is directly related to tissue damage. Regarding thermal simulation, bio-heat transfer models and approaches for taking into account the physiological response of the human body to RF exposure are discussed. In addition, suitable methods are presented to validate calculated RF and thermal results with measurements. Finally, the concept of generalized simulation-based specific absorption rate (SAR) matrix models is discussed. These models can be incorporated into local SAR monitoring in multi-channel MR systems and allow the design of RF pulses under constraints for local SAR.
000132711 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000132711 588__ $$aDataset connected to CrossRef, PubMed,
000132711 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark$$b1$$udkfz
000132711 7001_ $$0P:(DE-He78)4444ba69faa9240d7ec86ed09e6ca04e$$aBitz, Andreas$$b2$$eLast author$$udkfz
000132711 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2017.03.035$$gVol. 168, p. 33 - 58$$p33 - 58$$tNeuroImage$$v168$$x1053-8119$$y2018
000132711 909CO $$ooai:inrepo02.dkfz.de:132711$$pVDB
000132711 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bcbe9862276365dd99a98b48449fd046$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000132711 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000132711 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4444ba69faa9240d7ec86ed09e6ca04e$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000132711 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000132711 9141_ $$y2018
000132711 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000132711 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000132711 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000132711 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000132711 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2015
000132711 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000132711 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000132711 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000132711 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000132711 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000132711 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000132711 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000132711 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000132711 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2015
000132711 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000132711 980__ $$ajournal
000132711 980__ $$aVDB
000132711 980__ $$aI:(DE-He78)E020-20160331
000132711 980__ $$aUNRESTRICTED