001     132727
005     20240229105029.0
024 7 _ |a 10.1097/RLI.0000000000000432
|2 doi
024 7 _ |a pmid:29200014
|2 pmid
024 7 _ |a 0020-9996
|2 ISSN
024 7 _ |a 1536-0210
|2 ISSN
024 7 _ |a altmetric:34319472
|2 altmetric
037 _ _ |a DKFZ-2018-00381
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Piechotta, Paula L
|b 0
245 _ _ |a Increased Delay Between Gadolinium Chelate Administration and T1-Weighted Magnetic Resonance Imaging Acquisition Increases Contrast-Enhancing Tumor Volumes and T1 Intensities in Brain Tumor Patients.
260 _ _ |a Philadelphia, Pa.
|c 2018
|b Lippincott Williams & Wilkins
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1660116731_9237
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The aim of this study was to evaluate the impact of delayed T1-weighted (T1-w) MRI acquisition after gadolinium chelate administration on brain tumor volumes and T1-w intensities.Fifty-five patients with histologically confirmed, contrast-enhancing intra-axial brain tumors were analyzed in this prospective test-retest study. Patients underwent 2 consecutive 3 T MRI scans (separated by a 1-minute break) during routine follow-up with contrast-enhanced T1 (ceT1-w), T2, and FLAIR acquisition. Macrocyclic gadolinium chelate-based contrast agent was only administered before the first ceT1-w acquisition; median latency to ceT1-w acquisition was 6.72 minutes (IQR, 6.53-6.92) in the first and 16.27 minutes (IQR, 15.49-17.26) in the second scan. Changes in tumor volumes and relative ceT1-w intensities between the 2 acquisitions were quantitatively assessed following semiautomated tumor segmentation (separately for contrast-enhancement [CE], necrosis [NEC], and nonenhancing [NE] tumor).Semiautomatically segmented CE tumor volumes were significantly larger in the second acquisition (median +32% [1.2 cm]; IQR, 16%-62%; P < 0.01), which corresponded to a 10% increase in CE tumor diameter (+0.3 cm). Contrarily, NEC and NE tumor volumes were significantly smaller (median -24% [IQR, -36% to -54%], P < 0.01 for NEC and -2% [IQR, -1% to -3%], P = 0.02 for NE tumor). Bland-Altman plots confirmed a proportional bias toward higher CE and lower NEC volumes for the second ceT1-w acquisition. Relative ceT1-w intensities for both early- (regions already enhancing in the first scan) and late-enhancing (newly enhancing regions in the second scan) tumor were significantly increased in the second acquisition (by 5.8% and 27.3% [P < 0.01, respectively]). Linear-mixed effects modeling confirmed that the increase in CE volumes and CE intensities is a function of the interval between contrast agent injection and ceT1-w acquisition (P < 0.01 each).Our study indicates that the maximum extent of CE tumor volumes and intensities may increase beyond the time frame of 4 to 8 minutes after contrast agent injection and potentially affects the diagnosis of progressive or recurrent disease because late-enhancing recurrent disease might not be unequivocally detected on standard follow-up MRI.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Bonekamp, David
|0 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
|b 1
700 1 _ |a Sill, Martin
|0 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
|b 2
700 1 _ |a Wick, Antje
|b 3
700 1 _ |a Wick, Wolfgang
|0 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee
|b 4
700 1 _ |a Bendszus, Martin
|b 5
700 1 _ |a Kickingereder, Philipp
|0 P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e
|b 6
773 _ _ |a 10.1097/RLI.0000000000000432
|g Vol. 53, no. 4, p. 223 - 228
|0 PERI:(DE-600)2041543-6
|n 4
|p 223 - 228
|t Investigative radiology
|v 53
|y 2018
|x 0020-9996
909 C O |p VDB
|o oai:inrepo02.dkfz.de:132727
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2018
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INVEST RADIOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 2
920 1 _ |0 I:(DE-He78)G370-20160331
|k G370
|l KKE Neuroonkologie
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a I:(DE-He78)G370-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21