001     132739
005     20240229105030.0
024 7 _ |a 10.1158/1078-0432.CCR-17-2243
|2 doi
024 7 _ |a pmid:29351917
|2 pmid
024 7 _ |a 1078-0432
|2 ISSN
024 7 _ |a 1557-3265
|2 ISSN
024 7 _ |a altmetric:31967185
|2 altmetric
037 _ _ |a DKFZ-2018-00393
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Gómez, Soledad
|b 0
245 _ _ |a A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma.
260 _ _ |a Philadelphia, Pa. [u.a.]
|c 2018
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524828062_15100
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Purpose: The classification of medulloblastoma into WNT, SHH, group 3, and group 4 subgroups has become of critical importance for patient risk stratification and subgroup-tailored clinical trials. Here, we aimed to develop a simplified, clinically applicable classification approach that can be implemented in the majority of centers treating patients with medulloblastoma.Experimental Design: We analyzed 1,577 samples comprising previously published DNA methylation microarray data (913 medulloblastomas, 457 non-medulloblastoma tumors, 85 normal tissues), and 122 frozen and formalin-fixed paraffin-embedded medulloblastoma samples. Biomarkers were identified applying stringent selection filters and Linear Discriminant Analysis (LDA) method, and validated using DNA methylation microarray data, bisulfite pyrosequencing, and direct-bisulfite sequencing.Results: Using a LDA-based approach, we developed and validated a prediction method (EpiWNT-SHH classifier) based on six epigenetic biomarkers that allowed for rapid classification of medulloblastoma into the clinically relevant subgroups WNT, SHH, and non-WNT/non-SHH with excellent concordance (>99%) with current gold-standard methods, DNA methylation microarray, and gene signature profiling analysis. The EpiWNT-SHH classifier showed high prediction capacity using both frozen and formalin-fixed material, as well as diverse DNA methylation detection methods. Similarly, we developed a classifier specific for group 3 and group 4 tumors, based on five biomarkers (EpiG3-G4) with good discriminatory capacity, allowing for correct assignment of more than 92% of tumors. EpiWNT-SHH and EpiG3-G4 methylation profiles remained stable across tumor primary, metastasis, and relapse samples.Conclusions: The EpiWNT-SHH and EpiG3-G4 classifiers represent a new simplified approach for accurate, rapid, and cost-effective molecular classification of single medulloblastoma DNA samples, using clinically applicable DNA methylation detection methods. Clin Cancer Res; 24(6); 1355-63. ©2018 AACR.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Garrido-Garcia, Alícia
|b 1
700 1 _ |a Garcia-Gerique, Laura
|b 2
700 1 _ |a Lemos, Isadora
|b 3
700 1 _ |a Suñol, Mariona
|b 4
700 1 _ |a de Torres, Carmen
|b 5
700 1 _ |a Kulis, Marta
|b 6
700 1 _ |a Pérez-Jaume, Sara
|b 7
700 1 _ |a Carcaboso, Ángel M
|b 8
700 1 _ |a Luu, Betty
|b 9
700 1 _ |a Kieran, Mark W
|b 10
700 1 _ |a Jabado, Nada
|b 11
700 1 _ |a Kozlenkov, Alexey
|b 12
700 1 _ |a Dracheva, Stella
|b 13
700 1 _ |a Ramaswamy, Vijay
|b 14
700 1 _ |a Hovestadt, Volker
|0 P:(DE-He78)744146d3b5a3df1e0ac555e5bf1ee5cc
|b 15
|u dkfz
700 1 _ |a Johann, Pascal
|0 P:(DE-He78)3fdc3623477264cb5d0e14f256dbfbb8
|b 16
|u dkfz
700 1 _ |a Jones, David
|0 P:(DE-He78)551bb92841f634070997aa168d818492
|b 17
|u dkfz
700 1 _ |a Pfister, Stefan
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 18
|u dkfz
700 1 _ |a Morales La Madrid, Andrés
|b 19
700 1 _ |a Cruz, Ofelia
|b 20
700 1 _ |a Taylor, Michael D
|b 21
700 1 _ |a Martin-Subero, Jose-Ignacio
|b 22
700 1 _ |a Mora, Jaume
|b 23
700 1 _ |a Lavarino, Cinzia
|b 24
773 _ _ |a 10.1158/1078-0432.CCR-17-2243
|g Vol. 24, no. 6, p. 1355 - 1363
|0 PERI:(DE-600)2036787-9
|n 6
|p 1355 - 1363
|t Clinical cancer research
|v 24
|y 2018
|x 1557-3265
909 C O |o oai:inrepo02.dkfz.de:132739
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)744146d3b5a3df1e0ac555e5bf1ee5cc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)3fdc3623477264cb5d0e14f256dbfbb8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)551bb92841f634070997aa168d818492
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|2 G:(DE-HGF)POF3-300
|v Functional and structural genomics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CLIN CANCER RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CLIN CANCER RES : 2015
920 1 _ |0 I:(DE-He78)B060-20160331
|k B060
|l Molekulare Genetik
|x 0
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l Pädiatrische Neuroonkologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B060-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21