001     132788
005     20240229105032.0
024 7 _ |a 10.1007/s00277-018-3237-5
|2 doi
024 7 _ |a pmid:29359239
|2 pmid
024 7 _ |a 0939-5555
|2 ISSN
024 7 _ |a 0945-8077
|2 ISSN
024 7 _ |a 1432-0584
|2 ISSN
037 _ _ |a DKFZ-2018-00432
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Breitkreutz, Iris
|0 0000-0002-6038-2755
|b 0
|e First author
245 _ _ |a The orally available multikinase inhibitor regorafenib (BAY 73-4506) in multiple myeloma.
260 _ _ |a Berlin
|c 2018
|b Springer61936
264 _ 1 |3 online
|2 Crossref
|b Springer Science and Business Media LLC
|c 2018-01-23
264 _ 1 |3 print
|2 Crossref
|b Springer Science and Business Media LLC
|c 2018-05-01
264 _ 1 |3 print
|2 Crossref
|b Springer Science and Business Media LLC
|c 2018-05-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1525766292_10339
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A promising approach to the treatment of multiple myeloma (MM) involves agents that target not only the myeloma cells directly, but also the tumor microenvironment which promotes tumor cell growth, angiogenesis, and MM bone disease. Here we investigate the orally available multikinase inhibitor, regorafenib (BAY 73-4506), for its therapeutic efficacy in MM. Regorafenib is a potent inhibitor of angiogenic (VEGFR 1-3, PDGFR-b) as well as oncogenic (c-KIT, RET, FGFR, Raf) kinases. We show that regorafenib induces apoptosis in all MM cell lines at below clinically achievable concentrations. Regorafenib overcomes the growth advantage conferred by a stroma cell MM and an endothelial cell MM, co-culture systems, and abrogates growth factor-stimulated MEK, ERK, and AKT phosphorylation at nanomolar to micromolar concentrations. Moreover, it inhibits endothelial cell growth and tubule formation, abrogates both VEGF secretion and VEGF-induced MM cell migration, inhibits osteoclastogenesis, and shows synergistic cytotoxicity with dexamethasone, the immunomodulatory drug pomalidomide, and the p110δ inhibitor idelalisib. Most importantly, regorafenib significantly delays tumor growth in a xenograft mouse model of human MM. These results provide the rationale for further clinical evaluation of regorafenib, alone and in combination, in the treatment of MM.
536 _ _ |a 317 - Translational cancer research (POF3-317)
|0 G:(DE-HGF)POF3-317
|c POF3-317
|f POF III
|x 0
542 _ _ |i 2018-01-23
|2 Crossref
|u http://www.springer.com/tdm
542 _ _ |i 2018-01-23
|2 Crossref
|u http://www.springer.com/tdm
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Phenylurea Compounds
|2 NLM Chemicals
650 _ 7 |a Protein Kinase Inhibitors
|2 NLM Chemicals
650 _ 7 |a Pyridines
|2 NLM Chemicals
650 _ 7 |a regorafenib
|0 24T2A1DOYB
|2 NLM Chemicals
700 1 _ |a Podar, Klaus
|0 P:(DE-He78)04fd3ee9c4faa3e73a2271b1e3c37dc0
|b 1
|u dkfz
700 1 _ |a Figueroa-Vazquez, Vianihuini
|b 2
700 1 _ |a Wilhelm, Scott
|b 3
700 1 _ |a Hayden, Patrick J
|b 4
700 1 _ |a Anderson, Kenneth C
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Raab, Marc-Steffen
|0 P:(DE-He78)1cb537e833afd985097ccfaddffb2ef3
|b 6
|e Last author
|u dkfz
773 1 8 |a 10.1007/s00277-018-3237-5
|b Springer Science and Business Media LLC
|d 2018-01-23
|n 5
|p 839-849
|3 journal-article
|2 Crossref
|t Annals of Hematology
|v 97
|y 2018
|x 0939-5555
773 _ _ |a 10.1007/s00277-018-3237-5
|g Vol. 97, no. 5
|0 PERI:(DE-600)1458429-3
|n 5
|p 839-849
|t Annals of hematology
|v 97
|y 2018
|x 0939-5555
909 C O |o oai:inrepo02.dkfz.de:132788
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 0000-0002-6038-2755
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)04fd3ee9c4faa3e73a2271b1e3c37dc0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)1cb537e833afd985097ccfaddffb2ef3
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-317
|2 G:(DE-HGF)POF3-300
|v Translational cancer research
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANN HEMATOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)G170-20160331
|k G170
|l Experimentelle Therapien hämatologischer Neoplasien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)G170-20160331
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1182/blood-2007-10-116129
|9 -- missing cx lookup --
|1 SK Kumar
|p 2516 -
|2 Crossref
|u Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Zeldenrust SR, Dingli D, Russell SJ, Lust JA, Greipp PR, Kyle RA, Gertz MA (2008) Improved survival in multiple myeloma and the impact of novel therapies. Blood 111(5):2516–2520. https://doi.org/10.1182/blood-2007-10-116129
|t Blood
|v 111
|y 2008
999 C 5 |a 10.1016/S0140-6736(09)60221-X
|9 -- missing cx lookup --
|1 MS Raab
|p 324 -
|2 Crossref
|u Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC (2009) Multiple myeloma. Lancet 374(9686):324–339. https://doi.org/10.1016/S0140-6736(09)60221-X
|t Lancet
|v 374
|y 2009
999 C 5 |a 10.1182/blood-2002-06-1874
|9 -- missing cx lookup --
|1 T Hideshima
|p 703 -
|2 Crossref
|u Hideshima T, Akiyama M, Hayashi T, Richardson P, Schlossman R, Chauhan D, Anderson KC (2003) Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood 101(2):703–705. https://doi.org/10.1182/blood-2002-06-1874
|t Blood
|v 101
|y 2003
999 C 5 |a 10.1038/sj.onc.1204833
|9 -- missing cx lookup --
|1 T Hideshima
|p 5991 -
|2 Crossref
|u Hideshima T, Nakamura N, Chauhan D, Anderson KC (2001) Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20(42):5991–6000. https://doi.org/10.1038/sj.onc.1204833
|t Oncogene
|v 20
|y 2001
999 C 5 |a 10.1038/sj.leu.2403084
|9 -- missing cx lookup --
|1 S Kumar
|p 2025 -
|2 Crossref
|u Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Fonseca R, Greipp PR, Rajkumar SV (2003) Expression of VEGF and its receptors by myeloma cells. Leukemia 17(10):2025–2031. https://doi.org/10.1038/sj.leu.2403084
|t Leukemia
|v 17
|y 2003
999 C 5 |a 10.1182/blood.V98.2.428
|9 -- missing cx lookup --
|1 K Podar
|p 428 -
|2 Crossref
|u Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T, Lin BK, Gupta D, Shima Y, Chauhan D, Mitsiades C, Raje N, Richardson P, Anderson KC (2001) Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 98(2):428–435. https://doi.org/10.1182/blood.V98.2.428
|t Blood
|v 98
|y 2001
999 C 5 |a 10.1002/ijc.25864
|9 -- missing cx lookup --
|1 SM Wilhelm
|p 245 -
|2 Crossref
|u Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schutz G, Thierauch KH, Zopf D (2011) Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer 129(1):245–255
|t Int J Cancer
|v 129
|y 2011
999 C 5 |a 10.1016/S0140-6736(12)61900-X
|9 -- missing cx lookup --
|1 A Grothey
|p 303 -
|2 Crossref
|u Grothey A, Van CE, Sobrero A, Siena S, Falcone A, Ychou M, Humblet Y, Bouche O, Mineur L, Barone C, Adenis A, Tabernero J, Yoshino T, Lenz HJ, Goldberg RM, Sargent DJ, Cihon F, Cupit L, Wagner A, Laurent D (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):303–312. https://doi.org/10.1016/S0140-6736(12)61900-X
|t Lancet
|v 381
|y 2013
999 C 5 |a 10.1093/annonc/mdw237.03
|9 -- missing cx lookup --
|1 J Bruix
|p ii140 -
|2 Crossref
|u Bruix J, Merle P, Granito A, Huang Y-H, Bodoky G, Yokosuka O, Rosmorduc O, Breder V, Gerolami R, Masi G, Ross Paul J, Qin S, Song T, Bronowicki J-P, Ollivier-Hourmand I, Kudo M, LeBerre M-A, Baumhauer A, Meinhardt G, Han G (2016) LBA-03Efficacy and safety of regorafenib versus placebo in patients with hepatocellular carcinoma (HCC) progressing on sorafenib: results of the international, randomized phase 3 RESORCE trial. Ann Oncol 27(suppl 2):ii140–ii141. https://doi.org/10.1093/annonc/mdw237.03
|t Ann Oncol
|v 27
|y 2016
999 C 5 |a 10.1016/S1470-2045(16)30507-1
|9 -- missing cx lookup --
|1 O Mir
|p 1732 -
|2 Crossref
|u Mir O, Brodowicz T, Italiano A, Wallet J, Blay JY, Bertucci F, Chevreau C, Piperno-Neumann S, Bompas E, Salas S, Perrin C, Delcambre C, Liegl-Atzwanger B, Toulmonde M, Dumont S, Ray-Coquard I, Clisant S, Taieb S, Guillemet C, Rios M, Collard O, Bozec L, Cupissol D, Saada-Bouzid E, Lemaignan C, Eisterer W, Isambert N, Chaigneau L, Cesne AL, Penel N (2016) Safety and efficacy of regorafenib in patients with advanced soft tissue sarcoma (REGOSARC): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 17(12):1732–1742. https://doi.org/10.1016/s1470-2045(16)30507-1
|t Lancet Oncol
|v 17
|y 2016
999 C 5 |a 10.1074/jbc.M109068200
|9 -- missing cx lookup --
|1 K Podar
|p 7875 -
|2 Crossref
|u Podar K, Tai YT, Lin BK, Narsimhan RP, Sattler M, Kijima T, Salgia R, Gupta D, Chauhan D, Anderson KC (2002) Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation. J Biol Chem 277(10):7875–7881
|t J Biol Chem
|v 277
|y 2002
999 C 5 |a 10.1158/0008-5472.CAN-12-2026
|9 -- missing cx lookup --
|1 MS Raab
|p 5374 -
|2 Crossref
|u Raab MS, Breitkreutz I, Anderhub S, Ronnest MH, Leber B, Larsen TO, Weiz L, Konotop G, Hayden PJ, Podar K, Fruehauf J, Nissen F, Mier W, Haberkorn U, Ho AD, Goldschmidt H, Anderson KC, Clausen MH, Kramer A (2012) GF-15, a novel inhibitor of centrosomal clustering, suppresses tumor cell growth in vitro and in vivo. Cancer Res 72(20):5374–5385. https://doi.org/10.1158/0008-5472.CAN-12-2026
|t Cancer Res
|v 72
|y 2012
999 C 5 |a 10.1158/0008-5472.CAN-04-0124
|9 -- missing cx lookup --
|1 K Podar
|p 7500 -
|2 Crossref
|u Podar K, Shringarpure R, Tai YT, Simoncini M, Sattler M, Ishitsuka K, Richardson PG, Hideshima T, Chauhan D, Anderson KC (2004) Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res 64(20):7500–7506. https://doi.org/10.1158/0008-5472.CAN-04-0124
|t Cancer Res
|v 64
|y 2004
999 C 5 |a 10.1111/j.1365-2141.2007.06747.x
|9 -- missing cx lookup --
|1 I Breitkreutz
|p 55 -
|2 Crossref
|u Breitkreutz I, Raab MS, Vallet S, Hideshima T, Raje N, Chauhan D, Munshi NC, Richardson PG, Anderson KC (2007) Targeting MEK1/2 blocks osteoclast differentiation, function and cytokine secretion in multiple myeloma. Br J Haematol 139(1):55–63
|t Br J Haematol
|v 139
|y 2007
999 C 5 |a 10.1038/leu.2008.174
|9 -- missing cx lookup --
|1 I Breitkreutz
|p 1925 -
|2 Crossref
|u Breitkreutz I, Raab MS, Vallet S, Hideshima T, Raje N, Mitsiades C, Chauhan D, Okawa Y, Munshi NC, Richardson PG, Anderson KC (2008) Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia 22(10):1925–1932. https://doi.org/10.1038/leu.2008.174
|t Leukemia
|v 22
|y 2008
999 C 5 |a 10.1124/pr.58.3.10
|9 -- missing cx lookup --
|1 TC Chou
|p 621 -
|2 Crossref
|u Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58(3):621–681. https://doi.org/10.1124/pr.58.3.10
|t Pharmacol Rev
|v 58
|y 2006
999 C 5 |a 10.1158/0008-5472.CAN-09-1947
|9 -- missing cx lookup --
|1 TC Chou
|p 440 -
|2 Crossref
|u Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446. https://doi.org/10.1158/0008-5472.can-09-1947
|t Cancer Res
|v 70
|y 2010
999 C 5 |a 10.1016/0065-2571(84)90007-4
|9 -- missing cx lookup --
|1 TC Chou
|p 27 -
|2 Crossref
|u Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul 22:27–55. https://doi.org/10.1016/0065-2571(84)90007-4
|t Adv Enzym Regul
|v 22
|y 1984
999 C 5 |a 10.1182/blood.V89.1.227
|9 -- missing cx lookup --
|1 D Chauhan
|p 227 -
|2 Crossref
|u Chauhan D, Kharbanda S, Ogata A, Urashima M, Teoh G, Robertson M, Kufe DW, Anderson KC (1997) Interleukin-6 inhibits Fas-induced apoptosis and stress-activated protein kinase activation in multiple myeloma cells. Blood 89(1):227–234
|t Blood
|v 89
|y 1997
999 C 5 |1 A Ogata
|y 1997
|2 Crossref
|u Ogata A, Chauhan D, Teoh G, Treon SP, Urashima M, Schlossman RL, Anderson KC (1997) IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol 159(5):2212–2221
999 C 5 |a 10.1016/S1074-7613(00)80011-4
|9 -- missing cx lookup --
|1 R Catlett-Falcone
|p 105 -
|2 Crossref
|u Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G, Dalton WS, Jove R (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10(1):105–115. https://doi.org/10.1016/S1074-7613(00)80011-4
|t Immunity
|v 10
|y 1999
999 C 5 |a 10.1371/journal.pone.0050005
|9 -- missing cx lookup --
|1 V Ramakrishnan
|p e50005 -
|2 Crossref
|u Ramakrishnan V, Kimlinger T, Haug J, Painuly U, Wellik L, Halling T, Rajkumar SV, Kumar S (2012) Anti-myeloma activity of Akt inhibition is linked to the activation status of PI3K/Akt and MEK/ERK pathway. PLoS One 7(11):e50005. https://doi.org/10.1371/journal.pone.0050005
|t PLoS One
|v 7
|y 2012
999 C 5 |a 10.1158/2159-8290.CD-13-0014
|9 -- missing cx lookup --
|1 M Andrulis
|p 862 -
|2 Crossref
|u Andrulis M, Lehners N, Capper D, Penzel R, Heining C, Huellein J, Zenz T, von Deimling A, Schirmacher P, Ho AD, Goldschmidt H, Neben K, Raab MS (2013) Targeting the BRAF V600E mutation in multiple myeloma. Cancer Discov 3(8):862–869. https://doi.org/10.1158/2159-8290.cd-13-0014
|t Cancer Discov
|v 3
|y 2013
999 C 5 |a 10.1038/bjc.2012.153
|9 -- missing cx lookup --
|1 D Strumberg
|p 1722 -
|2 Crossref
|u Strumberg D, Scheulen ME, Schultheis B, Richly H, Frost A, Buchert M, Christensen O, Jeffers M, Heinig R, Boix O, Mross K (2012) Regorafenib (BAY 73-4506) in advanced colorectal cancer: a phase I study. Br J Cancer 106(11):1722–1727. https://doi.org/10.1038/bjc.2012.153
|t Br J Cancer
|v 106
|y 2012
999 C 5 |1 WT Bellamy
|y 1999
|2 Crossref
|u Bellamy WT, Richter L, Frutiger Y, Grogan TM (1999) Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 59(3):728–733
999 C 5 |a 10.1182/blood.V95.8.2630
|9 -- missing cx lookup --
|1 B Dankbar
|p 2630 -
|2 Crossref
|u Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM, Serve H, Berdel WE, Kienast J (2000) Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 95(8):2630–2636
|t Blood
|v 95
|y 2000
999 C 5 |a 10.1016/S0037-1963(01)90020-4
|9 -- missing cx lookup --
|1 NS Callander
|p 276 -
|2 Crossref
|u Callander NS, Roodman GD (2001) Myeloma bone disease. Semin Hematol 38(3):276–285. https://doi.org/10.1016/S0037-1963(01)90020-4
|t Semin Hematol
|v 38
|y 2001
999 C 5 |a 10.1016/S8756-3282(01)00657-3
|9 -- missing cx lookup --
|1 SE Lee
|p 71 -
|2 Crossref
|u Lee SE, Woo KM, Kim SY, Kim HM, Kwack K, Lee ZH, Kim HH (2002) The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone 30(1):71–77. https://doi.org/10.1016/S8756-3282(01)00657-3
|t Bone
|v 30
|y 2002
999 C 5 |a 10.1182/blood-2012-05-425934
|9 -- missing cx lookup --
|1 DS Siegel
|p 2817 -
|2 Crossref
|u Siegel DS, Martin T, Wang M, Vij R, Jakubowiak AJ, Lonial S, Trudel S, Kukreti V, Bahlis N, Alsina M, Chanan-Khan A, Buadi F, Reu FJ, Somlo G, Zonder J, Song K, Stewart AK, Stadtmauer E, Kunkel L, Wear S, Wong AF, Orlowski RZ, Jagannath S (2012) A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood 120(14):2817–2825. https://doi.org/10.1182/blood-2012-05-425934
|t Blood
|v 120
|y 2012
999 C 5 |a 10.1016/S1470-2045(13)70380-2
|9 -- missing cx lookup --
|1 J San Miguel
|p 1055 -
|2 Crossref
|u San Miguel J, Weisel K, Moreau P, Lacy M, Song K, Delforge M, Karlin L, Goldschmidt H, Banos A, Oriol A, Alegre A, Chen C, Cavo M, Garderet L, Ivanova V, Martinez-Lopez J, Belch A, Palumbo A, Schey S, Sonneveld P, Yu X, Sternas L, Jacques C, Zaki M, Dimopoulos M (2013) Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol 14(11):1055–1066. https://doi.org/10.1016/s1470-2045(13)70380-2
|t Lancet Oncol
|v 14
|y 2013
999 C 5 |a 10.1074/jbc.M507201200
|9 -- missing cx lookup --
|1 MP Byfield
|p 33076 -
|2 Crossref
|u Byfield MP, Murray JT, Backer JM (2005) hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 280(38):33076–33082. https://doi.org/10.1074/jbc.M507201200
|t J Biol Chem
|v 280
|y 2005
999 C 5 |a 10.1038/sj.onc.1207459
|9 -- missing cx lookup --
|1 JH Hsu
|p 3368 -
|2 Crossref
|u Hsu JH, Shi Y, Frost P, Yan H, Hoang B, Sharma S, Gera J, Lichtenstein A (2004) Interleukin-6 activates phosphoinositol-3′ kinase in multiple myeloma tumor cells by signaling through RAS-dependent and, separately, through p85-dependent pathways. Oncogene 23(19):3368–3375. https://doi.org/10.1038/sj.onc.1207459
|t Oncogene
|v 23
|y 2004
999 C 5 |a 10.1128/MCB.17.1.338
|9 -- missing cx lookup --
|1 A Klippel
|p 338 -
|2 Crossref
|u Klippel A, Kavanaugh WM, Pot D, Williams LT (1997) A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol 17(1):338–344. https://doi.org/10.1128/MCB.17.1.338
|t Mol Cell Biol
|v 17
|y 1997
999 C 5 |a 10.1074/jbc.275.2.992
|9 -- missing cx lookup --
|1 A Petiot
|p 992 -
|2 Crossref
|u Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275(2):992–998. https://doi.org/10.1074/jbc.275.2.992
|t J Biol Chem
|v 275
|y 2000
999 C 5 |a 10.1007/s11899-013-0189-7
|9 -- missing cx lookup --
|1 JE Chang
|p 33 -
|2 Crossref
|u Chang JE, Kahl BS (2014) PI3-kinase inhibitors in chronic lymphocytic leukemia. Curr Hematol Malig Reports 9(1):33–43. https://doi.org/10.1007/s11899-013-0189-7
|t Curr Hematol Malig Reports
|v 9
|y 2014
999 C 5 |a 10.1158/2159-8290.CD-11-0249
|9 -- missing cx lookup --
|1 DA Fruman
|p 562 -
|2 Crossref
|u Fruman DA, Rommel C (2011) PI3Kdelta inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discov 1(7):562–572. https://doi.org/10.1158/2159-8290.CD-11-0249
|t Cancer Discov
|v 1
|y 2011
999 C 5 |a 10.1182/blood-2011-05-352492
|9 -- missing cx lookup --
|1 J Hoellenriegel
|p 3603 -
|2 Crossref
|u Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ, Giese N, O'Brien S, Yu A, Miller LL, Lannutti BJ, Burger JA (2011) The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 118(13):3603–3612. https://doi.org/10.1182/blood-2011-05-352492
|t Blood
|v 118
|y 2011
999 C 5 |a 10.1182/blood-2009-06-222943
|9 -- missing cx lookup --
|1 H Ikeda
|p 1460 -
|2 Crossref
|u Ikeda H, Hideshima T, Fulciniti M, Perrone G, Miura N, Yasui H, Okawa Y, Kiziltepe T, Santo L, Vallet S, Cristea D, Calabrese E, Gorgun G, Raje NS, Richardson P, Munshi NC, Lannutti BJ, Puri KD, Giese NA, Anderson KC (2010) PI3K/p110{delta} is a novel therapeutic target in multiple myeloma. Blood 116(9):1460–1468. https://doi.org/10.1182/blood-2009-06-222943
|t Blood
|v 116
|y 2010
999 C 5 |a 10.1016/S0140-6736(12)61857-1
|9 -- missing cx lookup --
|1 GD Demetri
|p 295 -
|2 Crossref
|u Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P, Gelderblom H, Hohenberger P, Leahy M, Von MM, Joensuu H, Badalamenti G, Blackstein M, Le CA, Schoffski P, Maki RG, Bauer S, Nguyen BB, Xu J, Nishida T, Chung J, Kappeler C, Kuss I, Laurent D, Casali PG (2013) Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):295–302. https://doi.org/10.1016/S0140-6736(12)61857-1
|t Lancet
|v 381
|y 2013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21