000132816 001__ 132816
000132816 005__ 20240229111723.0
000132816 0247_ $$2doi$$a10.1007/s00103-018-2712-4
000132816 0247_ $$2pmid$$apmid:29487975
000132816 0247_ $$2ISSN$$a1436-9990
000132816 0247_ $$2ISSN$$a1437-1588
000132816 037__ $$aDKFZ-2018-00460
000132816 041__ $$ager
000132816 082__ $$a610
000132816 1001_ $$aHerrmann, Wolfram J$$b0
000132816 245__ $$a[Assessing incident cardiovascular and metabolic diseases in epidemiological cohort studies in Germany].
000132816 260__ $$aBerlin$$bSpringer$$c2018
000132816 3367_ $$2DRIVER$$aarticle
000132816 3367_ $$2DataCite$$aOutput Types/Journal article
000132816 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1550485157_632
000132816 3367_ $$2BibTeX$$aARTICLE
000132816 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000132816 3367_ $$00$$2EndNote$$aJournal Article
000132816 520__ $$aCardiovascular and metabolic diseases are a major cause of mortality and loss of quality of life in Germany. Research into risk factors of these diseases requires large population-based cohort studies. Complete and accurate assessment of the incidence of cardiovascular and metabolic diseases is a key element for valid interpretation of the results from such studies.Our aim was to identify population-based cohort studies with incidence of cardiovascular and metabolic diseases in Germany and to summarize their methods for assessment and classification of disease endpoints, including myocardial infarction, type 2 diabetes, stroke, heart failure, and arterial hypertension.Within the framework of a workshop, representatives of the ascertained population-based cohort studies in Germany with incidence of cardiovascular or metabolic diseases were invited to present and to systematically provide information on their methods of endpoint identification.We identified eight studies from different regions in Germany with a total of 100,571 participants, aged 18-83 years at baseline. Self-reporting by study participants is the major source for further inquiries to assess disease endpoints in these studies. Most studies use additional data sources to verify the incidence of diseases, such as documents provided by the treating physician or hospital.Our results highlight the central role of self-reporting and the efforts associated with identification and verification of disease endpoints in cohort studies. They also provide a basis for future population-based studies that aim for standardized assessment of the incidence of cardiovascular and metabolic diseases.
000132816 536__ $$0G:(DE-HGF)POF3-323$$a323 - Metabolic Dysfunction as Risk Factor (POF3-323)$$cPOF3-323$$fPOF III$$x0
000132816 588__ $$aDataset connected to CrossRef, PubMed,
000132816 7001_ $$aWeikert, Cornelia$$b1
000132816 7001_ $$aBergmann, Manuela$$b2
000132816 7001_ $$aBoeing, Heiner$$b3
000132816 7001_ $$0P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aKatzke, Verena$$b4$$udkfz
000132816 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b5$$udkfz
000132816 7001_ $$aTiller, Daniel$$b6
000132816 7001_ $$aGreiser, Karin Halina$$b7
000132816 7001_ $$aHeier, Margit$$b8
000132816 7001_ $$aMeisinger, Christa$$b9
000132816 7001_ $$aSchmidt, Carsten Oliver$$b10
000132816 7001_ $$aNeuhauser, Hannelore$$b11
000132816 7001_ $$aHeidemann, Christin$$b12
000132816 7001_ $$aJünger, Claus$$b13
000132816 7001_ $$aWild, Philipp S$$b14
000132816 7001_ $$aSchramm, Sara Helena$$b15
000132816 7001_ $$aJöckel, Karl-Heinz$$b16
000132816 7001_ $$aDörr, Marcus$$b17
000132816 7001_ $$aPischon, Tobias$$b18
000132816 773__ $$0PERI:(DE-600)1470303-8$$a10.1007/s00103-018-2712-4$$gVol. 61, no. 4, p. 420 - 431$$n4$$p420 - 431$$tBundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz$$v61$$x1437-1588$$y2018
000132816 909CO $$ooai:inrepo02.dkfz.de:132816$$pVDB
000132816 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000132816 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000132816 9131_ $$0G:(DE-HGF)POF3-323$$1G:(DE-HGF)POF3-320$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lHerz-Kreislauf-Stoffwechselerkrankungen$$vMetabolic Dysfunction as Risk Factor$$x0
000132816 9141_ $$y2018
000132816 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000132816 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000132816 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000132816 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBUNDESGESUNDHEITSBLA : 2015
000132816 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000132816 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000132816 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000132816 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000132816 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebserkrankungen$$x0
000132816 980__ $$ajournal
000132816 980__ $$aVDB
000132816 980__ $$aI:(DE-He78)C020-20160331
000132816 980__ $$aUNRESTRICTED